Inflation & the seek for a common origin to CMB anomalies

Juan Carlos Bueno Sánchez

Universidad Antonio Nariño (formerly at)

```
Based on JCBS: { Phys. Lett. B 739,2014 (arXiv:1405.4913), arXiv:1602.06809, arXiv:1603.01603
```

JCBS and Juan P. Beltrán Almeida: { in preparation in progress

Inflation & CMB anomalies

Absence of non-gaussianity, running index or features in the CMB Single-field inflation is sufficient to explain the data

Û

Additional info is required to continue discriminating models of inflation

CMB anomalies assumed to have a primordial origin

Used as a tool to probe the inflaton dynamics + interactions

A framework providing a common origin is desirable

Cold Spot, power deficit and statistical anisotropy

Phys. Lett. B 739,2014 (arXiv:1405.4913)

arXiv:1602.06809

arXiv:1603.01603

Disclaimer: this might be the wrong thing to do, but one can learn something interesting in the end

Inflation & CMB anomalies

The question

How much do you need to twist inflation to obtain CMB anomalies?

(i.e. breaking homogeneity & isotropy of the CMB)

The ingredient

Apart from the inflaton, other scalar field(s) contributes to the perturbation spectrum imprinted on the CMB

The set-up

* Inflaton responsible for most of the CMB perturbations (homogeneous & isotropic)

* An initially excited spectator field does not fully decay due

to its interactions during inflation

The desired outcome

Inhomogeneous distribution of the spectator field at the end of inflation

Breaking of statistical homogeneity of the CMB

Avenue towards CMB anomalies

A computer generated 2D fluctuating field (helping the eye)

Our Universe emerges from a nearly homogeneous patch

(previous phase of inflation homogenises the field)

Structure is imprinted on smaller scales as inflation proceeds.

Structure is imprinted on smaller scales as inflation proceeds.

The model in brief

Interacting spectator o during inflation

$$\mathcal{L} = \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma + \frac{1}{2} \partial_\mu \chi \partial^\mu \chi - \frac{1}{2} \bar{m}_\sigma^2 \sigma^2 - \frac{1}{2} \bar{m}_\chi^2 \chi^2 - \frac{1}{2} g^2 \sigma^2 \chi^2$$

Initial effective masses

$$m_\sigma^2 \simeq c_\sigma \, {\rm H}^2 ~~ m_\chi^2 \simeq g^2 \sigma^2 \gg H^2 ~~ c_\sigma, c_\chi = \mathcal{O}(1)$$

Difficulty: $m_{\sigma}^2 \sim H^2$ gives an expectation $\sigma \sim H$, at best:

$$\langle \sigma^2 \rangle \sim \frac{3H^2}{8\pi^2 c_\sigma}$$

Patches with large out-of-eq. fluctuations of σ emerge only if $\left[g^2\sigma^2\gg H^2
ight]$

Dynamical regimes (JCBS & Enqvist '13, JCBS '14)

$$g\sigma > H \longrightarrow \chi \text{ integrated out } \longrightarrow \sigma \text{ as a free field}$$

$$g\sigma \lesssim H \longrightarrow \chi \text{ undergoes particle production} \longrightarrow \begin{cases} \text{Trapping mechanism for } \sigma \\ \frac{\text{(Kof man et al. '04)}}{\sigma \text{ becomes a heavy field}} \end{cases}$$

$$\sigma \exp \text{ponentially suppressed}$$

The model in brief

Initially excited, massive, interacting σ

Spatial profile

Two important questions to ask

- 1- How is the initial condition for the spectator field generated?
- 2- How likely is the apperance of the inhomogeneous distribution?

Getting to the initial condition

Perturbation modes for the spectator field

$$\delta \ddot{\sigma}_k + 3H\delta \dot{\sigma}_k + \left(\frac{k^2}{a^2} + m_\sigma^2\right) \delta \sigma_k = 0 \qquad \underbrace{ \begin{array}{c} \text{superhorizon} \\ \\ \epsilon - \alpha = \left(\nu - \frac{3}{2}\right) \left(1 - \epsilon\right) \end{array} }$$

$$\nu > 3/2$$
 \longrightarrow Growth over Hubble scale

Rapid decrease of H implies:

Timescale for H to fall < timescale for σ to fall

Relative magnitude σ/H grows

Getting to the initial condition

Evolution of the width

$$\Sigma^2 \equiv \langle (\sigma - \bar{\sigma})^2 \rangle = \gamma \frac{H^2}{4\pi^2 (3 - 2\nu)} \left(1 - e^{-(3 - 2\nu)N_{\rm nsr}} \right)$$

Large values of σ/H become likely as non-slow-roll unfolds

Computing the fine-tuning

To estimate probability just integrate
$$I \equiv \int_{\Delta\sigma} G \, d\sigma$$

 $G(\sigma)$ = field distribution when slow-roll begins Begin inflation with σ = 0 -> Classical σ generated during non-slow-roll strongly depends on the inflationary model

Computing the fine-tuning

Phenomenological model (transition ~ H-1)

Moderate no. χ fields involved in the coupling $g^2\sigma^2\chi^2$

Independence from g

$$c_{\sigma} > \left(\frac{N_{\mathrm{CMB}}}{4\pi^2}\right)^{1/2} \exp(-c_{\sigma}N_*/3)$$

For scalar masses generally predicted by SUGRA and independently of the strength coupling g

$$\implies I \geq \mathcal{O}(10^{-2})$$

What's the inflationary model providing the appropriate conditions?

(CMB anomalies to seriously discriminate inflationary models)

Spots in the GW spectrum

Pseudoscalar model:
$${\cal L}_{
m int} = -rac{lpha}{4f}\,\sigma F_{\mu
u} ilde{F}^{\mu
u}$$

- * Production of A_{μ} driven by a field that becomes statistically inhomogeneous
- * A_{μ} produced with different efficiency in different regions of the CMB
- * Gauge field sources the production of GW

GW can be produced with different efficiency in different regions of the CMB

A patchy r suggests →

Sourced GW production (may be by a gauge field)

Primary **sustained**, non-slow-roll stage Powerful discriminator of inflation models

An inflation model with sustained, non-slow-roll was recently discovered!!

Burgess et al., 1605.03297 [gr-qc]