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Foreground removal efficacy remains a significant issue
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Even for dark radio sky ~1K foreground is ~104 larger than ~100uK signal
Foregrounds are expected to be smooth in frequency
... but are they?
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Ideally smooth foreground subtraction should work well
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 Many algorithms proposed to take advantage of this

* Would like to get noise down to ~50uK level to see real non-linear structures
INn lo-z (z<5) 21cm maps
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Non-Smooth Spectrum Foregrounds

 While it is true that optically thin free-free or synchrotron emission
IS smooth in the optically thin limit for any electron energy
distribute - yet it need not be so when self-absorption is present.

* There is evidence for synchrotron self-absorption in gigahertz
peaked sources (GPS).

 Faraday rotation linearly polarized light can cause the linearly
polarization to have oscillatory behavior which can leak into the
inferred intensity.

* e.g. GBT 21cm maps

 While it is unlikely that these could have spectral features as sharp
as those expected in 21cm spectrum it can contaminate the low k
modes which are important for measuring quantities like fy.
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Mode Mixing: Abstract

 An interferometer with a finite number of elements will only “see” a finite
number of “beams” on the sky.

 The Hilbert space of all linear combinations of beams we call the space of
beams.

 This space of beams generally depends on frequency. This frequency
dependence of the Hilbert spaces is called mode mixing because it irreducibly
mixes frequency dependence and angle dependence.

e If we could eliminate mode mixing one could directly measure the (spatially
averaged) frequency spectrum with no contamination from angular structure.

e Hi-Pass filtering out smooth spectrum foregrounds works better when the
amount of mode mixing is minimized.

o Goal: to “purify” the spectrum from mode mixing contamination.

 Emphasis on optimizing interferometer design (not optimizing analysis).
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Beam Projection and Purity

* Given a metric, -, on the space of beam define the beam projection operator:

B[] = 5, BV]-(B[v]'B[v]) B[v]

where Bj[v] are the frequency dependent beam in the Stokes x angle space. Each beam

corresponds to a distinct inteferometric pair of feeds, distinct after considering rotational
synthesis: Npaam < 72 Nigeg ( Nigeg = 1)

* B[v] has n,., (humber of beams) unit eigenvalues and the rest zero
* Define the purity operator by
P=|dvWV]BV] =3,p, #.0 p,
where W[v] is a v weight function (or purity band) such that: [ dv W[v] = 1
the p, (eigenvectors) are purity eigenbeams: p, *p; = 9,
the p, (eigenvalues) are purities: O<p,<1and >, p, =1
* The p, with the largest purity has the least mode mixing!

* The p, with p, «1 have large amounts of mode mixing and high pass filtering is less effective
at removing smooth but highly anisotropic foregrounds.
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Purity and Telescope Design

e There are at most n,.,, Very pure (p,=1) modes p..

* N.B. p,—1 in the limit of zero bandwidth: W[v]—=6[v-v,]

« A high purity interferometer is an one which for a given bandwidth has close to
Npeam VENY pure modes. They are useful for understanding the underlying spectra
of the emission.
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* Define the purity number =-In[1-p,] which is large for very pure modes

* Dense arrays with large overlap, B[v]-B|[v], do better than sparse arrays (see Reza’s talk).

* One never does worse by adding an additional element to an existing array (but ¥ $)
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Polarscope

A polarscope is a transit interferometer consisting of a number antenna each pointing directly at a Celestial
Pole, North or South.

Rotationally synthesized beam patterns depend only on magnitude of projected feed separation
perpendicular to CP direction, i.e. diurnal orbits in UV plane are circles.

Like all transit telescopes the projection/purity operator is block diagonal in R.A. m-space

good: Since it always points at same spot it integrates to low noise very rapidly

bad: sources near celestial poles move slowly so a polarscope has very little handle on diurnal
timescale transients, e.g. ground pickup. N.B. Signals repeat every half day not every day.
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Unfortunately Other Surveys Have Avoided NCP
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Tianlai dish array could operate as a Polarscope

~

16 x om.dish-arrayeach
w/ dual’pelarization feedsi==

——p—~

cylinder array
W/ many more feeds
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Spherical Cow Polarscope

* 16 identical dishes

* analyze only intensity (no polarization)
* assume Gaussian intensity primary beam (allows fast analytic computation)

* this is not too bad a representation of Tianlai dish/feed configuration according to EM
simulations

* graphically represent beam pattern by dish pattern as seen from the Celestial Pole (not
patten on ground as seen from zenith)
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uniformly distributed on projected circle
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declination dependence of purity eigenbeams

m =0 Hpeams = 15 ipuiy = 1 mean purity = 0.998885
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brown curve gives the eigenbeam in the full (full bandwidth) space of beams.
colored curves are projection of a single channel space of beams for 12 different frequency channels.
different channels are colored differently

however for this purest eigenbeam the patterns are largely identical so only see one channel (red)
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best purity eigenbeams
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best purity eigenbeams

m =0 Hpeams = 15 ipuiy =4 mean purity = 0.985826
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best purity eigenbeams

m=0 ttbeams
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best purity eigenbeams

m=0 Hyams =15 1 = 6 mean purity = 0.971875
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best purity eigenbeams

m =0 Hyeams = 15 ipuiy =7 mean purity = 0.959062
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best purity eigenbeams

m =0 Hpeams = 15 fpuiy = 8 mean purity = 0.945612
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best purity eigenbeams

1.5

1.0

0.5

0.0

-1.0

m =0 Hyeams = 15 ipuiy =9 mean purity = 0.925166

——

0.859909

0.893353
0.924139

0.940006
0.945239
0.949614
0.953812
0.954164
() OS50SR

0.941602
0.916883
0.872441

O_
[

2 3 4 5 6 7 8 9

angle from Pole (degrees)

10




22

1.0

0.5

0.0

-0.5

best purity eigenbeams

-1.0

—-1.5

m =0 Hpeams = 15 ipuiy = 10 mean purity = 0.897237

0.801041
0.866307
0.909926
0.919964

0.92075
0.929026

0.938298

0.93545

0.921584
0.878604

0.80869

1 2 3 4 5 6 7 8 9

angle from Pole (degrees)

10




23

configuration space: sp
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best performance: split into two compact subarrays

there exist purity Haish = 16 Hgpie=2 v e [700,800] MHz spaced 630 cm

‘resonances’
where astounding
purity is attained.
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A Very Pure Polarscope
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best purity eigenbeams

m =0 Hpeams = 15 ipuiy =1 mean purity = 1.
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m =0 Hpeams = 15 ipuiy =2 mean purity = 1.
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best purity eigenbeams

m =0 Hpeams = 15 ipuiy =3 mean purity = 1.
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m =0 Hpeams = 15 fpuiy = 6 mean purity = 0.999643
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best purity eigenbeams

Skip to 9th purity eigenmode
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best purity eigenbeams
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best purity eigenbeams
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Conclusions

* purity is one measure of the amount of mode mixing
* purity depends critically on details of array configuration
* similar configurations may have very different purity

* even a single high purity beam would allow one to test smooth
spectrum hypothesis over entire bandwidth with high precision

* by pointing toward the NCP (e.g. a polarscope) one can
integrate down rapidly to low noise levels [encounter and fix
problems on shorter timescale]

* with dishes (and even cylinders) configuration space is large
* better simulations needed (realistic polarized beams)
* are we at the science stage or proof of concept stage”?
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Upcoming Events

FUTURE

2016-09-21-23

REGISTRATION PARTICIPANTS PROGRAM PRESENTATIONS LOGISTICS KIce

On September 21-23, KICP will be holding a workshop on Future Cosmic Surveys. The workshop is intended to gather
community input and support for five potential future projects, outlined in "Cosmic Visions Dark Energy: Science", produced by
the DOE group. Related ideas were presented in the National Academies sponsored Elmegreen report; the recent NOAO/Kavli
sponsored study; and the NRAO 2020 Futures Program.

riment

u‘n
X
)
LrD

e The Tianlai Project — A Dark Energy Radio Observatio

workshop & collaboration meeting 2016-09-26-29
location: Fermilab (near Chicago)
contact: stebbins @fnal.gov
website TBA
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