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We test the viability of the Higgs-Dilaton model (HDM) compared to the evolving Dark Energy
Late Universe (wowaCDM) model, in which the cosmological constant model ACDM is also nested, by using the
Background latest cosmological data that includes the Cosmic Microwave Background temperature, polariza-
Ll tion and lensing data from the Planck satellite (2015 data release), the BICEP and Keck Array
Constrains on experiments, the Type Ia supernovae from the JLA catalog, the Baryon Acoustic Oscillations from
GRS CMASS, LOWZ and 6dF, the Weak Lensing data from the CFHTLenS survey and the Matter Power
CosmoMC Spectrum measurements from the SDSS (data release 7). We find that the values of all cosmolog-
\nalysis ical parameters allowed by the Higgs-Dilaton model Inflation are well within the Planck satellite
o (2015 data release) constraints. In particular, we have that wo = —1.000113007%, w, = 0.00%3:13,
o ne = 0.9693100083, as = —0.0011901% and ro.05 = 0.0025790017 (95.5%C.L.). We also place new
parameters stringent constraints on the couplings of the Higgs-Dilaton model and we find that &, < 0.00328
Constrains on HDI and &,/vA = 59200130000 (95.5%C.L.). Furthermore, we report that the HDM is at a slightly
couplings better footing than the wow,CDM model, as they both have practically the same chi-square, i.e.
Bayesian comparison Ax? = X?‘,anCDM —X#pm = 0.18, but with the HDM model having two parameters less, and finally
Conclusions a Bayesian evidence favoring equally the two models but the HDM being preferred by the AIC and

DIC information criteria.
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Main features

The Higgs-Dilaton Model (see Garcia-Bellido et al., 2011) has
Two main ingredients:
® Non-minimal extension of the Standard Model (SM) to
gravity.
® Replacement of General Relativity (GR) with Unimodular
Gravity (UR).

Two main features:

® By construction, classically scale-invariant (SI).

@® Scales G, v and A originate from the spontaneous
symmetry breaking of Sl.

The Higgs-Dilaton Model can explain inflation and present-day
cosmological acceleration from slow-roll of the fields.
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Higgs-Dilaton Model Lagrangian
In the Jordan frame (JF), the HDM Lagrangian is

Lsitucr 1 5 2\ &
ESHUCIE 2 (6P + &nh?) R+ K. T.
/—& 2 ( X )

1, « 22 4
(A(zh 2/\x> + Bx" — Mo

Moving to the Einstein frame (EF) , the HDM Lagrangian is

(1)

r R
SSUCEE MRS+ N.CK.T. (2)

V-8

Mg (3 (7 = $:7)° + 5 + o)
(62 + ph2)?
The ground states are, depending on [,

4ﬁfth3 (4)

M= 3+ X0
0= N0 Xe + ags
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Slow-roll parameters

For the homogeneous background we take the usual
homogeneous and isotropic FRWL metric,

ds® = g, dxtdx” = —dt* + a*(t)dx? (5)

We introduce the slow roll (SR parameters, which verify
€, = |n | <1 during inflation.

2

H 1| 1 D¢’

Ao ™M =g ©

Working with the number of e-folds N = In a ~ e/t and
renaming the fields (¢!, $?) = (x, h), the Friedmann and
Klein-Gordon equations are well approximated by

U .
H? = TR ¢ = -M2Viin0 (7)
P
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Figure: Blue: SR region. Shaded:
Sl region. Red trajectories
oscillate a few times and don't
reheat. Blue trajectories fast-roll
towards the potential valley,
oscillate strongly and reheat. Fig.
from Garcia-Bellido et al., 2011.
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Trashorras transverse traceless gauge (see Mukhanov et al., 1990),

ds? = — (1+20) dt? + a(t)? (1 - 20) 3 + h]T) dx’ o’

(10)
where ® and W are the Bardeen potentials.
The primordial scalar (curvature) perturbation
H /.
g:w—ﬁ(uurch). (11)

is conserved if inflation takes place in the scale invariant region.

The scalar and tensor power spectra are (at at a*H = ko)

1 H* 2 8 H* 2
Py(k) ~ Mae <27T) and Py(k) ~ MZ (27r> (12)
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turn 7 rate, (see Garcia-Bellido et al., 2011).)

Scalar power spectrum Tensor power spectrum
_ dln 735 o dlIn Pt
~1-2(e+mn) (14) ~ —2¢ (18)
as = dns/dInk (15) ar =dng/dInk  (19)
~ —(26 + 5)277“ (16) ~0 (20)

Tensor to scalar ratio and the inflation consistency condition:

A
r= AJ ~16e and r= —8n, (21)
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Asinh? (4&, N*
Aulho) = A5 ) (22
1152m2£585,
ns (ko) ~ 1 — 8&, coth (4&, N*) (23)
as(ko) 2 —32¢7 sinh ™2 (4, N*¥) (24)

The tensor-to-scalar ratio gives both A;(ko) and n:(ko),

r(ko) = —8n:(ko) ~ 192¢7 sinh ™2 (4¢, N*¥) (25)

A consistency check for the Higgs-Dilaton Model is found:

ors(ko) ~ f% r(ko) = g ne(ko) (26)
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Moving towards the DE Era

After reheating, the scalar fields settle down in one of the
potential valleys h(t)? =~ $x(t)%. Moving to new variables:

~ M
p=pyt , 0= ?Ptanhf1 (\/1 -G COSH) (27)

with the parameters

_ (& =¢ _ &
= c and v = 1+ 66, (28)

The ground states become

1—g
Cemmoloe (29

tanh?(a6(t)/Mp) ~
1+ S 17ee.
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Quintessence run-away potential

Plugging the ground states into the EF Lagrangian

L M3 ~ ~
=~ TP (ap) Vee(p) (30)
—8
we get a run-away-type potential
\/ ~ Ao —4yp/Mp
Vee(p) = ?e (31)

of the kind proposed for QE. (see Saposhnikov et al., 2008).
This allows the dilaton field to play the role of a dynamic DE.



Cosmological
Constraints
on
Higgs-Dilaton
Inflation

Manuel
Trashorras

Background
trajectories

Equations of motion

The equation of motion for the homogeneous field p(t) is

B3 -~ dVQE
3H =0 32
p+3Hp+ =2 (32)

or, equivalently, the equation of motion of dark energy density
is

00 = —3Hoe (1 + wgE) (33)

and rewriting in terms of o = 1 4 wgg, taking into account
the cosmic sum rule, and w.r.t. the e-folds,

/QE = —3d00e(2 — dgr) + 4v(2 — (5@)\/@ (34)
Qe = 3(dp — 90E) e (1 — Q0r) (35)

where sub-index “b" stands for any matter fluid,
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For 0 < ¢, < 2, the trajectories approach one of two attractor
solutions, depending on ~:

® If 4y > /30, the scalar field has woe = 1.

@ If 4y < \/30p, the scalar has woe = 1672/3 —1 < —1/3.

For £, < 1/2, we are assured that wgg is driven to the second
attractor. Therefore

@ Eventually Qg becomes relevant.
® The scalar fields p start rolling down the valleys.

© 0Qe starts growing towards its attractor value.

O Accelerated expansion of space begins.
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Constraint relations
For dge < 1, the E.o.M. yield (see Scherrer et al., 2007)

16+2
dae = 1 (FQee) ~ S5 (36)

1 1/ 1 1+ Qg
F(Q — E— ( — 1) 37
08) = =5 (e ~1) "1 e (37

Now ns(ko) and 69z(a) are given in terms of £, and/or N*

W] oo

—30pe~ns—1 |, 3wdp~as (38)
which can be equivalently written in differential form

_ dInPy(K))
(dInk)2

d|nQQE
dina

-~ dln Ps(k) d2|n ODE
~ dink " (dIna)?

a* 0
(39)
This may be understood as a consequence of scale invariance.
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CosmoMC
analysis

Note on CosMOMC modifications
The past calculations on the spectral quantities rely on a
non-standard parametrization of the dark energy equation of
state. We have to replace the one used by CAMB, within
CosMOMC (see Lewis, 2002).

wpe = wo +ws(l—a) —  wpe = wp + w,log(a/ap) (40)

Also, we have to replace the scalar and tensor power spectrum
in CAMB with one calculated with the HDM constraints:

2
ns=1- G coth G (41)
Nin
8wipF o 2 2

=——">G h“G — G coth G 42
Qs 30EE, (csc co ) (42)

12, 5
r = —-G°csch“G (43)

Ninf
N

G — 65DE inf (44)

8F(QQE) — 95DE
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For the wow,CDM run
(Planck—+Lensing+BAO+WL+MPK-+JLA):
e we have 16 chains in total,
e each cut at 20k samples (after burn-in),

e adding up to 320k samples in total.
For the HMD run (Planck+Lensing+BAO+WL+MPK+JLA):

e we have 32 chains in total,

e each cut at 16k samples (after burn-in),

e adding up to 515k samples in total.
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Parameter wow,;CDM HDM (pred.) HDM (obs.)
Confidence level 95.5%
7 000051 T0.00043 T0.00044
Primordial Power Qb 0.022377 oopa9  0-02231 70 1043 0.022337; 00043
Spectrum Qch? 0.1177+0:0035 0118174 9%% 0.1177+% %%
+0.00088 +0.00080 +0.00083
1006 1‘0411—%)_08800088 1‘0413?)—02500081 1.041‘1*—(1)]_03700082
rdei] TR oay | weoosgs oo bl
oo In(1010A,) 3.0671%02614 3 06370"01% e 3.06870‘_3800072
; wo —0.93+0-21 —0.99999+6,005C —1.0001+%,%72
wa —0.21+0-69 —0.02+0-18 0.007%1%
+0.011 +0.0045 10.0083
R ns 0‘9697&810115 0.966522)4(%)01551 0.96931%%01%2
el o —0.005G.0° 70‘0016%‘003114 70A001+E%001174
@Eimen (] 0.0 < 0.0964 0000275 5033 0'00225—6.0016
couplings Ninf n/a n/a 70t200
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FoM wow,CDM HDM QwowaCDM,HDM
wo, W, 8 2216 272
wo, As 40 3014 76
wo, ns 240 17847 74
Primordial Power wp, Qs 170 12281 72
Spectrum wo, 10.05 50 99458 1985
Wa, As 13 157 12
Wa, ns 74 940 13
iy wa, ors 49 635 13
oo Wa, 005 14 5152 358
As, ns 956 1405 15
As, as 559 946 17
As, 10.05 156 7334 47
ns, as 3202 5424 17
Constrains on ns, 10.05 951 213009 224
e Qs 10.05 698 28838 41
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Constraints on HDI couplings

We present the constraints for the HDM couplings 5;,/\5 and
&y by numerically inverting Eqgs. (22) and (23).

At the 95.5% confidence level, we find results in line with what
was expected &, 0(1073) and &,/v/AO(10%)

& < 0.00328 (45)

€n/ VA = 59200133900 (46)
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inflation We find the HDM is on an equal footing w.r.t. the wow,CDM:
Traahonas they have a similar chi-square, i.e.

Ax? = ngowaCDM — XZpym = 0.178, but with the HDM model
having two fewer parameters.

We also compare the two models and compare them by making
use of the Jeffreys' scale. The Bayesian evidence is defined as

E(D\M):/Rdu L£(D|u, M)r(u, M) (47)

We make use of three methods for the Bayesian analysis

-1

EMMA(D| M) = <1 % 1) (48)
- N~ L(D|u, M)
AIC(D|M) =2k + Xjin(D|u, M) (49)

DIC(D|M) =2(x*(D|u, M)) — Xgin(Dlu, M)~ (50)
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HMA, AIC and DIC results

We find the Bayesian evidence ratios and AIC/BIC differences
for HDM and wyw,CDM to be

REDM wowscom = 0-55 ~ 1.871 (51)
AAICHDM, wow,cDM = — 4.2, (52)
ADICupwm, wow,com = — 3.5, (53)

which imply that the HDM and twow,CDM are more or less on
an equal footing as seen by the evidence ratio R, but have the
HDM somewhat disfavoured in Jeffrey’s scale by the AAIC and
ADIC. The three are, though, very rough approximations.
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Conclusions

No tension is found between the Higgs-Dilaton Model and
current observations within wyw,ACDM.

The Higgs-Dilaton Model puts very stringent bounds on
wo, W, and r. To a lesser extent, also on asg.

Some of the contours for combinations of these
parameters exhibit very non-gaussian shapes.

Bounds for r and wy in particular should be able to accept
or exclude the model in the near future.
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