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Non linear gravitational evolution

 Structure formation in the Universe can be
studied using Linear Perturbation theory

when op < 1.

» Lagrangian Perturbation Theory (1LPT, 2LPT)
can be used to study the quasi-linear regime
op=1)

* But for the strong non-linear regimen when op
>> 1, there 1s no analytical approximations for
the gravitational evolution of density
perturbations. ..



Non linear gravitational evolution

 Therefore...

* One has to resort to numerically integrate the
equations governing the dynamical evolution
of self gravitating systems.

* Since they are made of a large number
clements ( stars, or dark matter particles ) one
can treat them as statistical mechanical
systems that are described by a distribution
function in phase space.



Basic Equations

Particle representations

* Direct representation of objects (galaxies, stars, planets)
* Monte Carlo sampling of particle distribution function (gas, dust, dark matter)

f(v)
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, : N
nl’x}:f X \-‘)(/\’*V
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N particles in volume V fo ]
o o mrde

Basic requirements:
e« As N — oo, error (“shot noise”) in approximate distribution function f\ goes to 0

*As N — =, equation describing evolution of f, becomes the Boltzmann equation




Basic Equations

Collisionality of a gas

Collisional gas (fluid): Kn —» 0 Collisionless gas: Kn — o

* Mean free path A < typical scale L * Mean free path A > typical scale L

* Random motions do not carry * Random motions carry particles far
particles far from mean trajectory from mean trajectory

* Solve moment equations for motion * Solve kinetic equations for motion
of fluid elements of particles (or distribution)

Knudsen number Kn = A/L




Basic Equations

Boltzmann equation

Write single-particle Hamiltonian as

H(x,p) = H__ . (X,p) o7 H (x,p)

\—//'

irregular

Use classical mechanics for H  ; treat H statistically
smooth irregular

Single-particle distribution function is f(x,p.t)
Number of particles in differential volume element is f(x,p,t) d°x d°p

Net flux in x-direction
fFi=f=
op

Net flux in p-direction
- s . a H.\'m
P
gx
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Basic Equations

The Boltzmann equation is then

(;f \ p V ]‘V Hsm (Of

sm é I

or, for H.s-m + (p( )
2m

of P -fo—qub-V,,f=( -

cli m

For self-gravity as a potential source we have
2
Vip=4mGp

where p = space density. p(x) —




‘ General collection of

e The big picture
Hamiltonians (quantum
liquids, large polyatomic ‘_"/ * | Class of salver

molecules, ere.) Separable Hamiltonians | Constraint
Equation

Non-separable

INo collisions (Kn = 1)| | Ideal collisions | Nonpoint collisions

| Vlasov equation | Elastic | Inelastic |

__N-body solvers | [Boltzmann equation | Fokker-Planck equation |

Moment equations for T Non-
R 7 ¥ Equipartition 2 i
collisional invariants equipartition

e

Collisions very important (Kn — 0):
Chapman-Enskog procedure to obtain lattice Boltzmann

Collisions somewhat Monte Carlo and

important (Kn ~ 1)

closure relations techniques

/\‘\

Zeroth order: First order: Navier- Second order:
Euler equations Stokes equations Burnett equations

\ (11 nonzzrffp& Mesh- and particle-based
transport coeffs. ! X i
Equation of state P ) hydrodynamic solvers
from equipartition Diffusive coefficients from: |
Newton/Hooke/Maxwell

Velocity lati essi
[[sothermal| ¢ | Adiabaric | el(rook': :r:aﬁoins | Incompressible |

| General ideal gas | Experiment

Compressible |

*Credit P. Ricker




Non-separable

General collection of

ke The big picture

Hamiltonians (quantum
liquids, large polyatomic ‘_"/ * | Class of salver

molecules, erc.)

No collisions (Kn = 1)

| Vlasov equation |

" N-body solvers |

Separable Hamiltonians | Constraint
Equation

| Ideal collisions | Nonpoint collisions

Elastic | Inelastic |

[Boltzmann equation | Fokker-Planck equation |

Moment equations for Non-
collisional invariants

equipartition

e

closure relations

Collisions very important (Kn —
Chapman-Enskog procedure to obtain lattice Boltzmann

0): Monte Carlo and

Collisions somewhat

important (Kn ~ 1)

techniques

/\‘\

Zeroth order: First order: Navier- Second order:
Euler equations Stokes equations Burnett equations

Equation of state \

(11 nonzero Mesh- and particle-based
transport coeffs.!) hydrodynamic solvers

[[sothermal| ¢ | Adiabaric |

from equipartition Diffusive coefficients from: |
Newton/Hooke/Maxwell

Velocity correlations | Incompressible |
Krook's equation

| General ideal gas | Experiment

Compressible |

*Credit P. Ricker




The Vlasov-Poisson Equation

* For pure collisionless gravitational systems

of
i)
5t |,
..and the equation to integrate 1s the integro-
differential Vlasov-Poisson equations:

A+ R .V, f—Vip Vpf=0

I m

V¢ =4nG [ f(z,p,t)d°p



The N-body method

« How can we solve de collisionless Bolzmann
(Vlasov) equation?.

 Method of the characteristics: f(x,p,t) 1s
constant along the characteristics.

 Discretize the f(x,p,t) in N phase space
volume elements (pseudo particles).

* For systems where f(X,p,t) only depens on
positions, the N tracers of the distribution
function can be just subvolumes of 3D

space variables such ZN m; = [, p(z)d3z
= L |74



The N-body method

 If f(x,p) has a dependence on momentum, (eg.
Neutrinos, or other relativistic particles
following Fermi-Dirac statistics, there must be
a sampling of the velocity distribution for
each subvolume of the space variables.

* The equations of the characteristics of each of
these pseudo-particles representing one phase
space element will be just the equations of
motion of N bodies subject to their mutual
gravity forces.



The N-body method

Therefore: Solution of the Vlasov equation 1s
equivalent to solving the coupled system of 6N
first order ordinary differential equations:

dXi =1
dt  m;
dp; __
dt ~— —mzv¢

gb(r) = —G Y:,f\il e )1/2

(|r—ri|2—|—e?



The N-body method

Therefore: Solution of the Vlasov equation 1s
equivalent to solving the coupled system of 6N first
order ordinary differential equations:

dx; _ Pi
dt — my
dCZi = —m;V,;9(x;)

¢(X) e _GZé\;l iz )1/2

(Ix—xi[2+e?

g 18 the gravitational softening parameter to avoid large
angle two body scattering and prevent formation of bound
particle. This ensures the collisionless nature of the fluid



The N- body method

AR =
dt m,,,

P = —m; V()

¢(X) = _GZf;il - )1/2

(|x—xi|2+e%

« Major problem: The O(N?) scaling due to the
computation of the gravitational potential ¢(X)

* In cosmology, one requires large volumes and
small masses per particles to resolve nternal
structure of halos hosting the galaxias.

* SO N is pretty large:NNIO12



The N-body method in Cosmology

For cosmological problems, space coordinates
depend on time through the Friedman equations.

Therefore, 1t 1s better to work in comoving
VIS NEITI (D u — & — ax + ax = H({)r + v

In addition, we also transform t -> a(t)
dx P d_p B Vo

da aSH’ da aH’




Numerical Methods

« PARTICLE-BASED

— Particle-particle
— Tree codes

 GRID-BASED

— Particle-Mesh

— ART (Adaptive Refinement Mesh tree)
« HYBRID

— Particle-Particle-Particle-Mesh (P3M)
— Tree + PM



PARTICLE BASED METHODS



Particle-Particle (PP)

O Easiest of all methods. Numerically integrate the
3N differencial equations.

O Particles are considered extended objects of size €
(Plummer softening)

L. : 2 X,j—Xj
Fz] % G"l (€2+|xi—x]‘|2)3’/2

O First method used to study growth of cosmological
fluctuations in expanding Universe (Aarshet, Gott,
Turner, 1979; Doroshkevich et al 1980).

O Advatages:

¢ Arbitrary boundary conditions
& Very accurate computation of forces.
& Highly parallelizable. Well suited for Massively

parallel computers and GPU or FPGA




TREE METHODS

Do not used any mesh at all. Treecodes — 2

Compute only particle-particle forces in a hierchical
decomposition using recursive splitting of space
domain.

Easy to implement boundary conditions.

Store particles in a tree data structure. Particles are at
leaves of tree; parent nodes store total mass of children.

When the force on a particle is needed, we traverse the

tree, starting at the root.
Advantages:
- . * No grid to limit resolution! (Must introduce force softening explicitly...)
If a node is terminal (leaf node), directly sum the force *Scales as N In N! (However, must tighten MAC as N =)
from the particle at that node. * Parallelizes extremely well
* Isolated boundaries are natural
Disadvantages:
If not, ask: is the monopole (or quadrupole, ...) of the * Error properties harder to analyze than mesh-based methods

node an adequate approximation to the force from the * Periodic boundaries must be introduced via Ewald summation
child particles?

« (i) If yes, use the approximate force and stop traversing o Exa m ple Of Tree COd es

this branch.

-t T, t(r)avgs; 0 t;e children. TREECODE (Barns-Hut Oct-tree)
chling.a5,0 Oy ‘PKDGRAV (K-D tree)+ Multipoles)

Periodic Boundary conditions can be *GADGET (Oct-tree)+
implemented using Ewald summation of infinite
replicas of the simulations box «2HOT (Oct-tree)

*CHANGA (Oct tree + Hexadecapoles)



TREE METHODS

Do not used any mesh at all. Treecodes — 2

Compute only particle-particle forces in a hierchical
decomposition using recursive splitting of space
domain.

Easy to implement boundary conditions.

Store particles in a tree data structure. Particles are at
leaves of tree; parent nodes store total mass of children.

When the force on a particle is needed, we traverse the

tree, starting at the root.
Advantages:
- . * No grid to limit resolution! (Must introduce force softening explicitly...)
If a node is terminal (leaf node), directly sum the force *Scales as N In N! (However, must tighten MAC as N =)
from the particle at that node. * Parallelizes extremely well
* Isolated boundaries are natural
Disadvantages:
If not, ask: is the monopole (or quadrupole, ...) of the * Error properties harder to analyze than mesh-based methods

node an adequate approximation to the force from the * Periodic boundaries must be introduced via Ewald summation
child particles?

(i) If yes, use the approximate force and stop traversing Pu bl IC aval Iable Tree COd es

this branch.

* If no, traverse to the children. ( Potte r+ 1 6)
* Scaling as O (N log(N))..
*http://www.pkdgrav.com
Periodic Boundary conditions can be rinael 2
implemented using Ewald summation of infinite (Sp J9¢ : O)
replicas of the simulations box https://wwwmpa.mpa-garching.mpg.de/gadget4/
(Quinn+15)

https://github.com/N-BodyShop/changa/



http://www.pkdgrav.com/
https://wwwmpa.mpa-garching.mpg.de/gadget4/
https://github.com/N-BodyShop/changa/

GRID BASED METHODS



Grid based numerical methods
Particle-Mesh (PM)l

Basic reference —>Hockney and Eastwood’s Computer
simulations using particles book

O Use a eulerian regular mesh in comoving space to
compute density from particles by interpolation.

O Solve Poisson equation in the mesh by convolution
of density with Green's functions in Fourier space.

O Fourier transformation is done by Fast Fourier
Transform algorithm = O(N log(N)). Much
faster than PP !

O Periodic Boundary conditions.  Adequate for
cosmological simulations.

O First application to cosmology (in 3D): Klypin &
Shandarin, 1983; White et al 1983. Many codes
have been developed since then.

O Can treat more particles than any other method.



Basic steps of the PM algorithm

. |Assign charge to the mesh points (qi‘)lfrom particle
positions (X;).

R .
e p(q) = ~ W(x; —q)

7=1
e Momentum conserving schemes: (W)
* No interpolation. Nearest-Grid-Point NGP
* Multilinear interpolation. Clouds-in-Cell.
(CIC) Particle-in-Cell (PIC)
* Multiquadratic interpolation. Triangular-
Shaped-Clouds (TSC)

Solve Poisson equation in the mesh.l

e In Fourier space: Convolution = Product

& a ) 27
(,m,n) = > G(p,q,7)p(p,q,7) exp <—(P *l+gexm+rx n))
P.q,r “\I

e Fast-Fourier-Transform (FFT) is O(N log(N))
e Different types of Green's Functions to reduce

GRID NOISE | (eg. EDFW 95)




e Simplest assumption: Greens F. for a 7-point
finite difference Laplacian:

B i
G(i, 3, k) = w(i2 + j2 + k2)

Find force from potential in the mesh.

o =
F(q) = —VDo(q)

D: 10-point differencing operator:

D:(i,7,k)¢ = $(Di-13k — Pr+1,5%) + 75(De—1,541.k —
Pir1,341k + DPi—13-1k — P413-1k + Pr—13k+1 —
Pet1,7.k+1 + Pi—1,3k—1 — Pit1,7.k—1)

Interpolate force from mesh to particles

M3 - .
Y W(x - q)F(q)
q

F(xy) = T

Move particles

dp; _ F(xy) = dxy _ p

da a ' da a2a
e Usual numerical techniques to integrate
oridnary diff. equations:




PM method

* Advantages of PM method:

easy to implement

Well suited for cosmological applications in which the mass i1s
volume-filling,

Good scaling (O(N In N). Easy to parallelize.
Natural implementation of periodic conditions.

No problema with 2 body relaxation. Particles do not see each other.

« Disadvantages of PM method:

Force approximation is anisotropic on the grid.
Newtonian force resolution ~2 mesh sizes.

Resolution depends on the mesh size.

« Some public parallel PM codes (+ IC generators)
— FASTPM (Feng+16 https://github.com/fastpm/fastpm
— PMFAST (Merz+ 05 https://www.cita.utoronto.ca/~merz/pmfast/



ADAPTIVE MESH REFINEMENT
L2001 em——

DenSIt and mesh structure -
Use staggered meshes to compute poisson’s y_

equation in different levels: PM is used at
level 0 and then cells are refined depending on gl

s

density. Typically each cell is recursively
refined if the number of particle per cell exceed
some threshold (around 10 particles).

Use relaxation methods to solve Poisson 2 o
equation in deeper levels can be cross talk
with upper levels.

Main problem is the bookkeeping of the mesh
structure.

— ENZO (Bryan & Norman 97)

— https://enzo-project.org/

— ART (Kravtsov & Klypin 96)

— RAMSES (Teyssier 2002)

— https://www.ics.uzh.ch/~teyssier/ramses/
— AMIGA (former MLAPM) (Knebe+01)
— http://popia.ft.uam.es/ AMIGA/



https://enzo-project.org/
https://www.ics.uzh.ch/~teyssier/ramses/
http://popia.ft.uam.es/AMIGA/
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Moving Mesh methods

& Gnedin 1995, Pen 1905.

1]
-
=
o
a
i
2]
o
Q
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V
o=
-

& Full Lagrangian approach.
move with the fluid.

Resolution increases in

& Same number of points.

high density and decreases elsewhere.
& Solves Poisson equation in the Lagrangian space.

& Do not use particles.

may introduce severe

distortions
anisotropies in the force calculation (Gnedin &

Bertschinger 1996)

& Mesh

*MMH-code, Pen, 1995,

ApJS,115,19




HYBRID N-BODY METHODS



Particle-Particle-Particle-Mesh (P3M):

— PM force accuracy only for scales > 2-3 cell size.

— Gravitational clustering produces large density
gradients: poor resolution when system becomes
too small compared with mesh discreetness.

— Possible Solution:

* Increase the number of cells.

 Divide the net force in Short-range (P-P) + Long-range
(PM). Neighbor search can be very expensive

Neighbor search is restricted to those particles lying within the same chaining mesh

cell (and immediate neighbors)



ANoF:10 =

O Use of subgrids in areas of high clustering regime

¢ Basic Procedure:

| ¥
.5
3.

B,

Identify regions for refinement.

PM forces in the main grid

PP-force for particles excepts those in high
density areas

P3M calculation in areas of 1. PP forces are
calculated.

Allow for further refinement in these new grids.

Q Dramatic speed up factors with respect to P3M.

¢ One of the first implementations of adaptive mesh
refinement (AMR) methods

© One of the | FIRST | cosmological codes to be in

PUBLIC. | domain.!.

(Thanks to Hugh Couchmann.)




ANoF:10 =

O Use of subgrids in areas of high clustering regime

¢ Basic Procedure:

1. Ildentify regions for refinement.

2. PM forces in the main grid

3. PP-force for particles excepts those in high
density areas

4. P3M calculation in areas of 1. PP forces are
calculated.

5. Allow for further refinement in these new grids.

© Dramatic speed up factors with respect to P3M.

 One of the first implementations of adaptive mesh
refinement (AMR) methods

 One of the | FIRST | cosmological codes to be in
PUBLIC. | domain.!.

*Hydra: Couchmann+96

-CUBEP3M (Harnois-Deraps+ 13)

*HACC: Habib+14


https://hydra.mcmaster.ca/
https://arxiv.org/abs/1410.2805
https://github.com/jharno/cubep3m

TREE + PM

Another method to account for the short —long range

gravitational forces is to combine a PM method to account for
long range with a TREE code to speed up the short scale force

Bagla 2002, Dubinski 2004, Spring

THE TREE-PM FORCE SPLIT
Periodic peculiar . 24, y) = 47G[p(x) — p] = 47G Z > m [ X —X; — nL)
i

potential

el 2005

Idea: Split the potential (of a single particle) in Fourier space into a long range and a short-range
part, and compute them separately with PM and TREE algorithms, respectively.

] 4G

Poisson equation — :
in Fourier space: Pk = k2 Px

(k # 0)

;shml

b [1 — exp(-142)

\

FFT to real space ¢(7) = —

(j)L’“g = ¢y exp(—k*r?) Pk

4

Solve with PM-method ' r
CIC mass assignment /

Gm
a%

. FFT

* multiply with kernel

* FFT backwards

* Compute force with 4-point
finite difference operator

* Interpolate forces to particle
positions

Solve in real space with TREE

credit V. Springel

1
7

The potential 1s split into two parts in Fourier space (Xu 97,

TREEPM CODES

GADGET4 (Springel 20)

https://qitlab.mpcdf.mpg.de/vrs/gadget4

GREEM (lIshiyama09)
GOTPM (Dubinski+ 04)

GIZMO (Hopkins, 15)

http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.html


https://gitlab.mpcdf.mpg.de/vrs/gadget4

TIME INTEGRATION

* Once the gravitational forces are calculated for every
particle, the equations of orbital motions fhas to be
integrated in time.

 Different time integrators can be used to integrate a
second order ODE ( e.g. Runge-Kutta 4" order, or
LeapFrog)

e The most often used method in N-body problems is

— Velocities and positions are shifted by half time interval.

— There are two versions of the Leapfrog, depending on whether
one starts first by shifting velocities at half timestep using forces
at the present timestep (kick) and then update positions to the full
time step (drift ) and recomputing forces with new positions and
update velocities to full step (Kick)... or viceversa.



TIME INTEGRATION

G =f(x); F=v(t)

X12+1/2 = Xn + VnAt/Q

Vni1 = Vn + £(Xp41/2) At

Xn+1 = Xpy1/2 + Vnty14t/2.

Vnt1/2 = Va + f(xn)At/2

Xn4+1 = Xn + Vn+1/2At

Vnil = Vpy1/e + f(Xnp1)AL/2




LEAP FROG

« KDK and DKD are second order time
accuracy ( O(At?) ).

* Contrary to Runge-Kutta, they are symplectic
time 1ntegrators

— Symplectic: D & K operators conserves the
Hamiltonian structure of the dynamical system

— The time evolution 1s a continuous canonical

transformation generated by the Hamlltoman of
the SYStem . 2 i ;,‘- Zm mi@(Xi — X;)

— Time-reversible 1ntegrators



LEAP FROG

Exercise: Integrate the 2-body Kepler problem using
Leap-Frog (KDK and DKD) and RK4 .

Test the total energy conservation as function of orbital

1 Despite the lower accuracy, Leapfrog 2J——— .
perlOds. behaves much better than RK4 k£ fourth-order Runge-Kutta

E e=09

INTEGRATING THE KEPLER PROBLEM % 200 ocbits

T — e e [ 502.8 steps / orbit

—
0.4 |-fourth-order Runge-Kutta

F Leapfrog (fixed stepsize)
E =09
200 ocbits

[ 2010.6 steps / orbit




LEAP FROG

Exercise: Integrate the 2-body Kepler problem

If variable At is used during time integration, the energu conservation is
worse and the KDK performs better than DKD

Leapfrog with Variable At - oo vk

F e=09

INTEGRATING THE KEPLER PROBLEM : 200 ccbits

. ——— e
0.4|-DPKD, variable step

£ KDK, variable step

vvvvvvvvvvvvvvvvvvvv

E e=09
200 ocbits
[ 2453 steps / oibit

....................

—Going to KDK reduces the error by a factor 4,
at the same cost !



LEAP FROG

Variable timesteps 1s a must for simulations with large N,
so, KDK 1s mostly used in cosmological codes.

Time step selection criteria:
Cosmological criterion: At must be much smaller than
. 1
the age of the Universe : At << =

Acceleration/velocity criterion: Particles should not move

faster than some preselected threshold &, of order of the force
resolution

Timesteps can be individually assigned to each particle following
the above criteria such that a_,, = a, (particle acceleration)

(e.g. GADGET and PKDGRAYV3 codes)



LEAP FROG

* For grid based codes (e.g. PM), constant
timesteps are used.

 For AMR codes (e.g. ART and RAMSES),
time step 1s reduced a factor 2 for each
refinemet level.

Time step is scaling as

Zemp+07 suggest
iy e 2

(2.8 reduction of At per level)



DOMAIN DECOMPOSITION

* Modern cosmological N-body codes must
have some degree of parallelism to be able to
run in HPC infrastructures. All of them use
MPI Library to communicate among the
different nodes, some also have OpenMP
directives to speed up in-node computations.

* The computational domain (e.g. particles, or
particles + grids) has to be decompose into
smaller pieces that will be distributed among
the available compute nodes.



DOMAIN DECOMPOSITION

* The domain decomposition algorithm 1s one
the most important ingredients of a N-body
code because it controls the load-balancing of
the computations.

* Domain decomposition has to minimize
exchange of information, so they must
conserve locality of particle positions and
account for work load 1n each node.



HILBERT CURVE
DECOMPOSITION

« All particles are ordered according
to a 1D index that preserves
locality in 3D.

-------

 The Hilbert curve is chuncked in | | | .-
as many pieces as processors | ;
with the same number particles or | [

same work load (weighting by
FLOPS/particle)

« For wvery clustered situations,
more domains than available
CPUS can be considered (e.g.
MULTIPLEDOMAINS options in
GADGET4)




INITIAL CONDITIONS GENERATORS

Cosmological N-BODY simulations are used to
follow the gravitational evolution of density
perturbations beyond linear theory.

Therefore, the 1nitial conditions for N-body have
to be 1n agreement with the results from linear
perturbation calculations.

Lagrangian Perturbation Theory (LPT) can
follow the distribution o particles in 3D
comoving volume to the quasi-linear regime.

So, it is natural to use the first or 2™ order LPT to
set up Ics for N-BODY.



INITIAL CONDITIONS GENERATORS

e FIRST STEP: generate a realization of the linear density gaussian
fluctuation dp(X, ti,;) = FFT ( P2 (k) €'9)

R and C Gauss (0,1)

Kmax . =
* 3p(X, tipi) = D+(tinit)2kmm( [P (K)(R+iCy,) e~

ZTR o 2: N7 (Nyquist Frequency)

x kmin:



INITIAL CONDITIONS GENERATORS

* Second Step: Compute the displacement field

and velocities 1LPT

From ILPT, Zeldovich or 2LPT approximations. =~ b o d=-Vo=Y X exp(ikx)

k

* Move particles from lagrangian positions q; using the displacement field d and assign
velocities.

« Phase space for the N particles is ready. Start the N-body integration using your prefer
code.

« Some IC codes available:

UNIGRID:
— 2LPTIC (https://cosmo.nyu.edu/roman/2LPT/)
— FASTPM (https://github.com/fastpm/fastpm
— N-GENICS (comes with GADGET4 code)
— PANPHASIA (http://icc.dur.ac.uk/Panphasia.php
MULTIGRID (valid for zoom simulations or single box)
*  MUSIC (multiscale ics, valid for zooms, ) https://www-n.oca.eu/ohahn/MUSIC
»  Mpgrapfic (included in RAMSES) , PMSTARTM ( ART, http://astro.nmsu.edu/~aklypin/PM/pmcode

*  GINNUNGAGAP (MPI + OpenMP) https://github.com/ginnungagapgroup/ginnungagap



https://cosmo.nyu.edu/roman/2LPT/
https://github.com/fastpm/fastpm
http://icc.dur.ac.uk/Panphasia.php
https://www-n.oca.eu/ohahn/MUSIC/
http://astro.nmsu.edu/~aklypin/PM/pmcode
https://github.com/ginnungagapgroup/ginnungagap

Halo Finders




Halo finders

 Different possibilities:

— 3D configuration space (X,y,z)
 Friend Of Friends (FoF).

— Percolation algorithm.

— Group particles that are spatially closer than a given distance
b= linking length




Halo finders

 Different possibilities:

— 3D configuration space (X,y,z)
» Friend Of Friends (FoF).

— Percolation algorithm.

— Group particles that are spatially closer than a given distance
b= linking length




Halo finders

 Different possibilities:

— 3D configuration space (X,y,z)
» Friend Of Friends (FoF).

— Percolation algorithm.
— Group particles that are spatially closer than a given distance
b= linking length
* FoF halos have arbitrary shape.

« Not capable of finding subhalos by itself. Can be
recursively applied with smaller linking lengths.
Hierachical FOF (Gottloeber+ 99).

* Problems with linking bridges....



Halo finders

«  Different possibilities:
— 3D configuration space (X,y,Zz)
» Friend Of Friends (FoF).
— Percolation algorithm.

— Group particles that are
spatially closer than a given
distance b= linking length

* FoF halos have arbitrary shape.

* Not capable of finding subhalos by
itself. Can be recursively applied
with smaller linking lengths.
HFOF.

* Problems with linking bridges....




Halo finders

«  Different possibilities:
— 3D configuration space (X,y,Zz)
» Friend Of Friends (FoF).
— Percolation algorithm.

— Group particles that are
spatially closer than a given
distance b= linking length

* FoF halos have arbitrary shape.

* Not capable of finding subhalos by
itself. Can be recursively applied
with smaller linking lengths.
HFOF.

* Problems with linking bridges....
* How to choose the linking length?

* Good agreement between FoF
mass and Virial mass for

b ~0.17-0.2

Comparison of FOF and Virial Masses (b=0.2)

crit vzr

A Is the virial overdensity estimated by
the Spherical collapse model. A=97 for

ACDM.




Halo finders
» Density Peak collector

— Estimate the smooth density field on a mesh from
particles.

— Identify local peaks as centers for halos.

Collect particles 1n spherical shells around the peaks
until M. 1s reached.

Can 1dentify halos and sub-halos.



Halo finders

* Density Peak collector & velocity information

— Can use particle velocities to interactively remove
gravitationally unbound particles




Halo finders

* Density Peak collector & velocity information

— Can use particle velocities to interactively remove
gravitationally unbound particles

> 80 (Press & Schechter 1974)
> BDM (Kiypin et al. 1997)

» IsoDen  (Pfitzner et al. 1997)

> DENMAX (Gelb & Bertschinger 1991)
» SKID (Stadel 2001)

» HOP (Eisenstein & Hut 1998)

> SUBFIND (Springel 2001)
» MHF (Gill, Knebe & Gibson 2004)
> PSB (Kim & Park 2005)

» VOBOZ  (Neyrinck et al. 2005)
> AHF (Knollmann & Knebe 2009)

)
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* Density Peak collector & velocity information

— Can use particle velocities to interactively remove
gravitationally unbound particles

> 80 (Press & Schechter 1974)
> BDM (Kiypin et al. 1997)

» IsoDen  (Pfitzner et al. 1997)

> DENMAX (Gelb & Bertschinger 1991)
» SKID (Stadel 2001)

» HOP (Eisenstein & Hut 1998)

> SUBFIND (Springel 2001)

» MHF (Gill, Knebe & Gibson 2004)
> PSB (Kim & Park 2005)

» VOBOZ  (Neyrinck et al. 2005)

> AHF (Knollmann & Knebe 2008




Halo finders
AMIGA HALO FINDER (AHF)
http://popia.ft.uam.es/AHF

Density field 1s constructed in a hierarchy of
staggered meshes (AMR). Halos are found for
density peaks in each refinement level.

adaptive grid hierarchy

the AMR grids naturally locate centres


http://popia.ft.uam.es/AHF

Halo finders
AMIGA HALO FINDER (AHF)
http://popia.ft.uam.es/AHF

Identifies main halos and all substructures, at all
levels. Then for each one do unbinding procedure
and computes integral and radial profiles of quantites



http://popia.ft.uam.es/AHF
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Identifies main halos and all substructures, at all
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and computes integral and radial profiles of quantites
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Halo finders
6D Phase Space halo finders

6DFOF (Diemand+06)

Search particles closer than a given distance in
phase space

ROCKSTAR: (Behroozi+13 ApJ)
https://bitbucket.org/gfcstanford/rockstar/

One of the most popular codes for analysing large
volume simulations with N > 1012 particles

Adaptive hierarchical FoF in 6D phase space.


https://bitbucket.org/gfcstanford/rockstar/

Halo finders

ROCKSTAR:
(Behroozi+13 ApJ)

https://bitbucket.org/efcstanford/rockstar/

Obtains all hierarchy of halos and sub
halos.

Uses information from previous timesteps
to 1dentify progenitors.

Can be used later for producing merger
trees using

software

https://bitbucket.org/pbehroozi/consistent
-trees/src/main/

1. The simulation volume is divided
into 3D Friends-of-Friends groups
for easy parallelization.

2. For each group, particle positions
and velocities are divided (normal-
ized) by the group position and ve-
locity dispersions, giving a natural
phase-space metric.

3. A phase-space linking length is
adaptively chosen such that 70% o
the group’s particles are linked to-
gether in subgroups.

4. The process repeats for each
subgroup: renormalization, a new
linking-length, and a new level o
substructure calculated.

5. Once all levels of substructure are
found, seed halos are placed at the
lowest substructure levels and par-
ticles are assigned hierarchically to
the closest seed halo in phase space.

6. Once particles have been as-
signed to halos, unbound particles
are removed and halo properties
(positions, velocities, etc.) are
calculated.



https://bitbucket.org/gfcstanford/rockstar/
https://bitbucket.org/pbehroozi/consistent-trees/src/main/
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N-body Simulations: things to look at

 Mass and force resolutions:

Dark halos identified with less than ~100 particles are usually not very trustable.

Check the gravitational smoothing choice: ¢ (typically ~ 1/20-1/40 L/N'?3 see also
Mansfield+21 )

Distances less than ~3 x € or 2-3 cell sizes in AMR are also subject to numerical
errors dues to unresolved gravitational forces.

Center of halos are subject to two body relaxation. Apply convergence criteria
(tretax = /g n teross™ 1/2 tuniverse) (Power+ 03) for profiles.

Distances larger than 2 box size are affected by periodic conditions. Important for
clustering measures.

Cosmic Variance effects due to Box size L (Power & Knebe 2006)

» Time steps:

Too large timesteps can introduce large errors in the particle trajectories. (see e.g.
Quinnt+97 )

* For fixed timesteps, a rule of thumb is N, > 6000(10kpc/e) to integrate a
Hubble time. (Lake+95)

» Starting redshift

Best if started as earlier as possible. Depends on Box size and LPT used (Knebe+ 09)






SUMMARY

Collisionless N-body simulations are still an indispensable tool in Cosmology.

There has been an enormous technical development in the N-Body codes in the last 15
years.
— From 10 billion particles in 2005 (Millenium) to today’s 2 trillion particles FLAGSHIP

We have been able to discover the main features of the late stages of non linear
gravitational evolution of a collisionless dark matter fluid and test predictions about the
distribution and internal structure of dark matter halos. But it lacks a fundamental
ingredient: Baryonic matter which is responsible for most of the observations from
galaxies.

The N-body results can be complemented with some sort of modelling of the galaxy
properties the dark halos are hosting (e.g. HOD, SHAM, SAM, or more recently, Machine
Learning techniques)

But for a self consistent picture of the cosmological galaxy formation, and to account for
the effects of collisional matter, gas and star formation modelling has to be included in a
simulation.

Therefore, gas-dynamical simulations are the ultimate tool for properly understanding the
combined gravitational evolution of the multiphase fluid that led to the formation of the
structures we see today from our place in the Universe.
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