
Umut Gürsoy 
  Utrecht University 

Magnetic catalysis, Chern-Simons 
diffusion and spin transport in QGP

  

AdS4CME workshop, 15/3/2022 



QGP hydrodynamics



B ~ 1014 BMRI

Magnetic field

QGP hydrodynamics



B ~ 1014 BMRI

Magnetic field

QGP hydrodynamics

0.5 1.0 1.5 2.0
� [��]

0.010

0.050
0.100

0.500
1

��� [��
� ]
pre-thermalization

post-thermalization0.200

Kharzeev, Rajagopal, UG ‘14



Strong vortical structure
<latexit sha1_base64="vQ2zkzJ9iq5VomDS3mk2t6JLetM=">AAAB/3icdVDLSgMxFM3UV62vUcGNm2ARXA2ZvtRd0Y3LCvYBnaFk0kwbmswMSUYoYxf+ihsXirj1N9z5N6YPQUUPXDiccy/33hMknCmN0IeVW1peWV3Lrxc2Nre2d+zdvZaKU0lok8Q8lp0AK8pZRJuaaU47iaRYBJy2g9Hl1G/fUqlYHN3ocUJ9gQcRCxnB2kg9+8CLBR1g6CkmoIsQgt4wwLJnF5GDauVztwqRUy6VK8ZBTrWEatUKdB00QxEs0OjZ714/JqmgkSYcK9V1UaL9DEvNCKeTgpcqmmAywgPaNTTCgio/m90/gcdG6cMwlqYiDWfq94kMC6XGIjCdAuuh+u1Nxb+8bqrDMz9jUZJqGpH5ojDlUMdwGgbsM0mJ5mNDMJHM3ArJEEtMtImsYEL4+hT+T1olx6057nWlWL9YxJEHh+AInAAXnII6uAIN0AQE3IEH8ASerXvr0XqxXuetOWsxsw9+wHr7BCiolOs=</latexit>

! ⇠ 1000~

QGP hydrodynamics



Vorticity
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Matter antimatter asymmetry

Chiral magnetic and vortical effect



Part I: magnetic fields, anisotropic QCD



Open questions  
✴   Ground state: dependence of hq̄qi
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✴   Thermodynamics: phase diagram of QCD at finite B 

✴   Hydrodynamics and transport:  2 conductivities, 2 shear, 3 bulk viscosities

                                                      B dependence of η, ζ  


✴    Fully back-reacted magneto-hydrodynamics: HIC, neutron star mergers

✴   Anomalous transport: chiral magnetic and vortical effects, Chern-Simons diffusion rate

✴   Out of equilibrium: initial conditions for hydro, generation of chiral imbalance 

Hernandez, Kovtun ’17 
Grozdanov, Hofman, Iqbal ‘17 
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Improved holographic QCD in the Veneziano limit 
Kiritsis, Nitti, UG ’07; Kiritsis, Nitti, Mazzanti, UG ’08 ’09 
Jarvinen, Kiritsis ’11; Alho et al ’12 

Polyakov ’98 ’00 

• QCD has infinite operators unlike N=4 sYM   


• General bulk⇔boundary should apply to QCD for λ≫1


• Integrating out fast modes in the 5D non-critical string 

⟹ effective 5D gravity + matter  


• IR sum-rules in QCD: OPA semi-closed on relevant/marginal operators

Shifman, Vainshtein, Zakharov ’79 
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Write down a bulk 5D action for Tµ⌫ , trG2, trG ^G, q̄q, Jµ

Determine the potentials + integration const. from the basic features of QCD:

Confinement, asymptotic freedom, χSB, gapped discrete spectrum, anomalies  

Color tube ⇔ fundamental string, flavor ⇔ D5 branes

Systematic errors largely reduced by fixing the large field limits of potentials  

Improved holographic QCD in the Veneziano limit 
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Jarvinen, Kiritsis ’11; Alho et al ’12 ’13
- Fix Vf , κ(λ) by non-singular IR, qualitative features of the phase diagram in μ and x, condensate anomalous 

dimension, chiral anomaly, meson mass spectrum 

- Choose w(λ) = κ(cλ) by conductivity, diffusion const. of the plasma  

Iatrakis, Zahed ‘12; Alho et al ’13

B. The Potentials

The potentials entering the action of the holographic model are the Vg(�), Vf (�, ⌧), w(�),

and (�). The dilaton potential Vg(�) governs the glue dynamics in the absence of fla-

vors, the tachyon potential, Vf (�, ⌧) is mainly responsible for the dynamics of the tachyon

condensation and the breaking of chiral symmetry at zero temperature. Additionally, the

potentials w(�) and (�) determine the coupling of the mesons to glue. The choice of the

potentials in the current work coincides with that of [43]. The near boundary expansion of

those potentials is such that the perturbative dynamics of QCD are reproduced. In partic-

ular, the numerical coe�cients of Vg, Vf0 and  are fixed by matching to the beta function

of QCD and the quark mass anomalous dimension. The explicit form of the potentials is

Vg(�) =
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where LUV is the AdS radius, so that the boundary expansion of the metric is A ⇠

ln (LUV /r) + · · · . The radius depends on x as

L
3
UV = L
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The IR asymptotics of the potentials are constrained by certain low energy features of the

dual field theory. Those include confinement, chiral symmetry breaking and the correct

thermodynamic behavior of the theory at strong coupling at finite Nf/Nc. Moreover, the

behavior of the glueball and meson spectra is highly dependent on the IR behavior. For

the function w we use the choice

w(�) = (c�) =
(1 + log(1 + c�))�

1
2

�
1 + 3

4

�
115�16x

27 �
1
2

�
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- Fix Vg  by  non-singular IR, linear confinement, linear mass spectrum, lowest glueball mass,  ΔS(Tc) 
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Figure 3: (Color online) Same as in fig. 1, but for the ε/T 4 ratio, normalized to the SB limit.

Note that in ref. [82], by looking at the comparison with the N = 3 lattice results for ∆/T 4

from ref. [36], it was pointed out that the slight discrepancy between the improved holographic
QCD model and the lattice results in the region of the peak (which for the SU(3) lattice data
is located at T ! 1.1Tc, and is slightly lower than the IHQCD model curve) was likely to be a
finite-volume lattice artifact. Here, fig. 2 indeed confirms this: our results for the SU(3) gauge
group are consistent with ref. [36], while the ∆/T 4 maximum for the N > 3 gauge groups is
higher and located closer to Tc. This is related to the fact that the deconfining phase transition,
which is a weakly first-order one for SU(3), becomes stronger when N is increased [153–155]—see
also refs. [156–158]—and correspondingly the value of the correlation length at the critical point
becomes shorter.

In order to study the relevance of AdS/CFT effective models for the sQGP, it is interesting
to investigate ‘how close’ to being conformal the deconfined system is. To address this issue, in
fig. 5 we plot the lattice equation of state in a (ε, p) plane (in a format similar to analogous plots
in refs. [96,159], up to a different normalization of the horizontal axis), where the conformal limit
is described by the straight line through the origin and the point corresponding to the SB limit in
the top-right corner. As the temperature is increased, the points tend to approach the conformal
line from below. As it has been pointed out in ref. [96] (by looking at results of SU(3) and SU(4)
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Fixing the potentials 

- Fix Z  by  topological susceptibility, axial glueball spectrum 



Magnetic catalysis
Klevansky, Lemmer ’89; Suganuma, Tatsumi ’91; Gusynin, Miransky, Shovkovy ‘94  

hūui
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NJL in 3+1(supercritical):    

Free chiral fermions in 2+1:  

hq̄qi = hq̄qi0
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Magnetic Catalysis Gusynin, Miransky, Shovkovy ’94

B

u

B

L uR

s p s p

• B increases 〈q̄q〉 at T = 0

• Seems counter-intiutive in the
light of BCS: B destroys the
Cooper pair 〈ee〉

• Opposite charges important

• Gusynin, Miransky, Shovkovy ’94 studied in 3+1 NJL:
〈q̄q(B)〉2 = 〈q̄q(0)〉2

(

1 + |eB|2
3〈q̄q(0)〉4 ln(Λ/〈q̄q(0)〉2

)

• Similar behavior for QCD at weak αs

• Dimensional reduction 3 + 1 → 1 + 1 through Landau
quantization⇒ IR dynamics stronger in lower D

Magnetically induced phenomena and Holographic QCD – p.19

• B catalyses chiral symmetry breaking
• Generic: QED, NJL, free(!) … 2+1, 3+1  

• B aligns spins, effectively reduces 3+1⇒ 1+1

• Stronger correlation between opposite chiralities
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md !Nu!1, Nd!2"
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Figure 11: (Color online) The dynamical masses of the u-quarks (red color) and d-quarks (green color) as functions of the magnetic field for Nc = 3
and two different choices of the number of flavors: (i) Nu = 1 and Nd = 2 (solid lines), and (ii) Nu = 2 and Nd = 2 (dashed lines). The result may
not be reliable in the weak magnetic field region (shaded) where the running coupling constant becomes strong (αs ! 0.1). The values of masses
are given in units of ΛQCD = 250 MeV.

where eq is the electric charge of the q-th quark and Nc is the number of colors. The numerical factors C1 and C2
equal 1 in the leading approximation that we use. Their value, however, can change beyond this approximation and
we can only say that they are of order 1. The constant cq is defined as follows:

cq =
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, (264)

where Nu and Nd are the numbers of up and down quark flavors, respectively. The total number of quark flavors is
Nf = Nu + Nd. The strong coupling αs in the last equation is related to the scale

√
|eB|, i.e.,

1
αs
" b ln

|eB|
Λ2QCD

, where b =
11Nc − 2Nf

12π
. (265)

We should note that in the leading approximation the energy scale
√
|eB| in Eq. (265) is fixed only up to a factor of

order 1.
After expressing the magnetic field in terms of the running coupling, the result for the dynamical mass takes the

following convenient form:

m2q " 2C1
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αs(N2c − 1) ln(C2/cqαs)

]

. (266)

As is easy to check, the dynamical mass of the u-quark is considerably larger than that of the d-quark. It is also
noticeable that the values of the u-quark dynamical mass becomes comparable to the vacuum value m(0)dyn " 300 MeV
only when the coupling constant gets as small as 0.05.

Now, by trading the coupling constant for the magnetic field scale |eB| using Eq. (266), we get the dependence
of the dynamical mass on the value of the external field. The numerical results are presented in Fig. 11 [we used
C1 = C2 = 1 in Eq. (266)].

As one can see in Fig. 11, the value of the quark mass in a wide window of strong magnetic fields, Λ2QCD $ |eB| "
(10 TeV)2, remains smaller than the dynamical mass of quarks m(0)dyn " 300 MeV in QCD without a magnetic field. In
other words, the chiral condensate is partially suppressed for those values of a magnetic field. The explanation of this,
rather unexpected, result is actually simple. The magnetic field leads to the mass Mg (262) for gluons. In a strong
enough magnetic field, this mass becomes larger than the characteristic gap Λ in QCD without a magnetic field (Λ,
playing the role of a gluon mass, can be estimated as a few times larger than ΛQCD). This, along with the property of
the asymptotic freedom (i.e., the fact that αs decreases with increasing the magnetic field), leads to the suppression of
the chiral condensate.
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Magnetic catalysis on the lattice 

Bali, Schafer et al ’11 ’12 

Inverse Magnetic Catalysis: a puzzle
G. Bali et al ’11, ’12

• B destroys 〈q̄q〉 around T ∼ Tc

• Tc decreases with B

Magnetically induced phenomena and Holographic QCD – p.20

Inverse Magnetic Catalysis: a puzzle
G. Bali et al ’11, ’12

• B destroys 〈q̄q〉 around T ∼ Tc

• Tc decreases with B

Magnetically induced phenomena and Holographic QCD – p.20

• B acts destructively for T ⪞ Tc

• Inverse effect missed in earlier studies with large m & coarse lattices

D’Elia et al ‘11



Magnetic catalysis generally

Banks, Casher ‘80• Banks-Casher relation  h ̄ i = ⇡⇢(0)
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Condensate  ⟺  Dirac spectrum around zero 

In LL0 approx  
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hqqi / eB

Likely to fail in presence of strong correlations



Magnetic catalysis generally

Banks, Casher ‘80• Banks-Casher relation  h ̄ i = ⇡⇢(0)
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hqqi / eB

Likely to fail in presence of strong correlations

Possible Explanations
• “Valence” vs. “sea” quarks F. Bruckmann et al ’13

〈q̄q〉 =
∫

DAe−S[A]det(D(A,B) +m)tr(D(A,B) +m)−1

Valence⇒ enhances 〈q̄q〉 for any B. Sea⇒ favors A configs.
with larger Dirac eigenvalues⇒ suppresses 〈q̄q〉 for larger B

• B effectively reduces 3 + 1 → 1 + 1, enhancing 〈q̄q〉. But larger
B reduces αs by asymptotic freedom, diminishing 〈q̄q〉.

• Clearly a result of non-trivial interplay between confinement
and chiral symmetry breaking

• Should be able to observe in a phase deconfined with broken
chiral symmetry

• This happens in holographic QCD in the Veneziano limit Jarvinen,
Kiritsis ’12

Magnetically induced phenomena and Holographic QCD – p.21

• Two competing contributions in general: D’Elia, Negro ’11; Bruckmann, Endrodi, Kovacs ‘13

Banks-Casher applies to valence contribution ⟹ catalysis

Sea contribution acts destructively near Tc ⟹ decatalysis:

Sea prefers A configurations that order the Polyakov loop near Tc

  ⟹ punishes configurations with small Dirac eigenvalues
Bruckmann, Endrodi, Kovacs ‘13



Questions for holography

• Valence vs. sea separation fails at larger B, conjecture still holds?


• Lattice does not cover large B, what happens there? 


• Are there other mechanisms at work? 


• Magnetic catalysis at finite μ?


• Are there new phases at finite T-B-μ?



Improved holographic QCD in the Veneziano limit 
Kiritsis, Nitti, UG ’07; Kiritsis, Nitti, Mazzanti, UG ’08 ’09 
Jarvinen, Kiritsis ’11; Alho et al ’12

Glue sector

CP-odd sector
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Quark sector

U(1)B  ⇔ magnetic field U(1)A
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Glue sector

CP-odd sector

<latexit sha1_base64="YDYas5Nc/4tjb8ZqiafE8RzMpGM=">AAAB8XicdVDLSgMxFM3UV62vqks3wSK4GpJaW90V3bis0Bd2hpJJ0zY0kxmSjFCG/oUbF4q49W/c+Tdm2goqeuDC4Zx7ufeeIBZcG4Q+nNzK6tr6Rn6zsLW9s7tX3D9o6yhRlLVoJCLVDYhmgkvWMtwI1o0VI2EgWCeYXGd+554pzSPZNNOY+SEZST7klBgr3TX7qRcmnkxm/WIJudUKvqydQ+QiVEW1ckbwGUYIYqtkKIElGv3iuzeIaBIyaaggWvcwio2fEmU4FWxW8BLNYkInZMR6lkoSMu2n84tn8MQqAziMlC1p4Fz9PpGSUOtpGNjOkJix/u1l4l9eLzHDCz/lMk4Mk3SxaJgIaCKYvQ8HXDFqxNQSQhW3t0I6JopQY0Mq2BC+PoX/k3bZxVUX31ZK9atlHHlwBI7BKcCgBurgBjRAC1AgwQN4As+Odh6dF+d10ZpzljOH4Aect08ppZFA</latexit>

Tµ⌫

<latexit sha1_base64="/hQuHLPifb84haLs99QFw9OIqf8=">AAAB+nicdVDLTgJBEJz1ifha9OhlIjHxYMgsIuiN6EGPmMgjASSzwwATZh+Z6VXJyqd48aAxXv0Sb/6Ns4CJGq2kk0pVd7q73FAKDYR8WHPzC4tLy6mV9Ora+samndmq6SBSjFdZIAPVcKnmUvi8CgIkb4SKU8+VvO4OzxK/fsOVFoF/BaOQtz3a90VPMApG6tiZFvA7UF4Matw6wOfX+Y6dJbliwTkpHWGSI6RISvmEOIcOIdgxSoIsmqHSsd9b3YBFHveBSap10yEhtGOqQDDJx+lWpHlI2ZD2edNQn3pct+PJ6WO8Z5Qu7gXKlA94on6fiKmn9chzTadHYaB/e4n4l9eMoHfcjoUfRsB9Nl3UiySGACc54K5QnIEcGUKZEuZWzAZUUQYmrbQJ4etT/D+p5XNOMedcFrLl01kcKbSDdtE+clAJldEFqqAqYugWPaAn9GzdW4/Wi/U6bZ2zZjPb6Aest08j2ZPs</latexit>

trG2

Quark sector

U(1)B  ⇔ magnetic field U(1)A
<latexit sha1_base64="m3c7y6pnLIf6MLLsqhCB54OhOeI=">AAAB9XicdVBLSwMxGMz6rPVV9eglWARPS1Jrq7eiF48V7APatWTTbBua3axJVilL/4cXD4p49b9489+YbSuo6ITAMPMN+TJ+LLg2CH04C4tLyyurubX8+sbm1nZhZ7epZaIoa1AppGr7RDPBI9Yw3AjWjhUjoS9Yyx9dZH7rjinNZXRtxjHzQjKIeMApMVa66UprZll4a0+vUERupYzPqicQuQhVULWUEXyMEYLYKhmKYI56r/De7UuahCwyVBCtOxjFxkuJMpwKNsl3E81iQkdkwDqWRiRk2kunW0/goVX6MJDK3sjAqfo9kZJQ63Ho28mQmKH+7WXiX14nMcGpl/IoTgyL6OyhIBHQSJhVAPtcMWrE2BJCFbe7QjokilBji8rbEr5+Cv8nzZKLKy6+Khdr5/M6cmAfHIAjgEEV1MAlqIMGoECBB/AEnp1759F5cV5nowvOPLMHfsB5+wQaepJC</latexit>

qq
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Glue sector
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Tµ⌫
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trG2

Quark sector

U(1)B  ⇔ magnetic field U(1)A
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qq

Introduce μ and B in  Vµ = (V0(r),�x2B/2, x1B/2, 0, 0)

Quark condensate in ⌧ = mqr(� log⇤r)�⇢ + hq̄qi(� log⇤r)⇢ + . . .
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Figure 1: The confinement-deconfinement transition temperature Td (left) and the chiral transition
temperature T� (right) as a function of the magnetic field for di↵erent values the parameter c, for
zero quark mass, mq = 0 and for x = 1. Td and B are measured in units of the energy scale ⇤.

and growing behavior with B dominates1. All dimensionful quantities are measured in

units of ⇤, that is an energy scale of the model which appears as an integration constant

in (2.6) and (2.7).

The right plot in Fig. 1 depicts the chiral transition temperature as a function of B for

di↵erent values of c. We note that for small values of c, i.e., c < 0.4, the chiral transition

temperature is a decreasing function of B, a fact that signals inverse magnetic catalysis.

The function w(�) takes larger values for smaller c as shown in figure 2. This means

that the coupling of the magnetic field to the glue dynamics, i.e., the dilaton, becomes

stronger for smaller values of c. As a result, we qualitatively expect that the e↵ect of

the quarks to the transition temperature becomes more important and eventually leads to

inverse magnetic catalysis. This argument is in qualitative agreement with findings in [47],

where it is shown that a large w(�), compared to the c = 1 case matches better the lattice

result for the electric conductivity of QGP at vanishing B. A detailed phenomenological

matching of the model to low energy QCD is a subject we leave for future work, but it

is reassuring that the results of our preliminary analysis here are in qualitative agreement

with electromagnetic properties of QGP. The choice c = 0.4 seems to correctly reproduce

the qualitative features observed in the lattice studies.

Since we have included the dynamics of the flavor sector in the full backreacting regime

of Nf ⇠ Nc, we are able to explicitly compute the quark condensate using our model. Using

the standard holographic techniques, we set the non-normalizable boundary solution of the

tachyon to zero, which corresponds to zero quark mass, and then read numerically the value

of the condensate form the normalizable solution of Eq. (2.7). In Fig. 3, curves of constant

chiral condensate are plotted. Higher curves correspond to lower values of the condensate,

and finally the red dashed line is the chiral transition, along which the condensate vanishes.

Hence, we observe that the condensate is a decreasing function of B at fixed temperature,

1We find numerically that the dip does not disappear, but becomes extremely weak as c increases. Td

grows with B also for c = 3 even though this is barely visible in figure 1. The growth becomes more

pronounced at higher B for this value of c.
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Figure 4: Left: The normalized variation of the chiral condensate, �⌃(B, T ), as a function of B
for constant T , c = 0.4, zero quark mass, and x = 1. Right: The normalized chiral condensate in
the confined phase (T = 0) as a function of the magnetic field at zero quark mass and x = 1 and
for di↵erent values of the parameter c.

rh is the location of the horizon and r✏ is a cut-o↵ near the boundary. The magnetization

of the ground state is (at any value of B)

MB = �
1

V4

@S
on�shell
E

@B

= M
3
N

2
c

Z r✏

rh

dr B xVf (�, ⌧)w(�, ⌧)
2
e
A(r)+W (r)G(r)

Q(r)
. (3.7)

Both the susceptibility and the magnetization diverge at the boundary and have to be

renormalized appropriately. We do this here by subtracting their values for reference

(thermal gas) solutions at T = 0.

In figure 5, we show the magnetic susceptibility �B as a function of temperature for

di↵erent values of c. The plot shows that smaller c leads to larger values of �B. This is

expected by the following argument. Since the function w that controls the coupling of the

magnetic field to the plasma is more pronounced for smaller c, we expect the e↵ect of quarks

become more important, yielding a stronger inverse magnetic catalysis, in other words, a

steeper decrease in Td around B = 0. Now, because at the deconfinement transition near

B = 0 we have dF = 0 and hence dTd/dB = ��BB/S, a stronger decrease in Td with B

results in a larger positive value of �B. Another observation is appearance of kinks at the

chiral transition T = T� that is di↵erent from the deconfinement transition (T� > Td) for

x = 1.

4. Varying number of flavors

In our holographic model both the number of colors Nc and the number of flavors Nf are

taken to be infinite with their ratio x = Nf/Nc fixed. By varying x then it should be

possible to study the influence of the quark sector on (inverse) magnetic catalysis. It is

also interesting to investigate whether the phase diagram show additional features in the

regime with B/⇤2
� 1 for di↵erent values of the ratio x. We address these questions in
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Figure 2: Dependence of the function w(�) on the parameter c for x = 1. The curves are for
c = 0.25, 0.4, 1 and 3. We note that increasing c suppresses w(�).
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Figure 3: Curves of constant hq̄qi on the T �B plane, in units of ⇤, for c = 0.4, zero quark mass,
and x = 1. The labels on the curves correspond to the value of hq̄qi/⇤3. Below the blue curve,
corresponding to the deconfinement transition, the condensate is independent of temperature, hence
the lines are straight. Moreover, as the chiral transition (the red dashed line) is approached from
below the value of the condensate approaches zero.

that is indeed the phenomenon of inverse magnetic catalysis. The reason for the straight

contours for the condensate below the blue curve is that this phase correspond to the

thermal gas background in the holographic dual, for which the temperature dependence of

all thermodynamic functions is suppressed as 1/Nc in the large-N limit.

The chiral condensate is not invariant under the renormalization group flow. A renor-

malization group invariant combination reads

⌃(T,B) =
hq̄qi(T,B)

hq̄qi(0, 0)
=

1

hq̄qi(0, 0)
(hq̄qi(T,B)� hq̄qi(0, 0)) + 1 , (3.1)
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- Both Tχ and Τc generically decrease with B

- Clear sign of inverse magnetic catalysis around Tχ ~ Τc for small B

- Inverse catalysis more pronounced for small c

- Catalysis comes back at larger B

- T dependence suppressed in the confined phase as 1/N2  



Magneto-holographic QCD: phase diagram 
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• Generically 3 separate phases with 1st and 2nd order boundaries

• Both Tχ and Τc generically decrease with B

• New deconfined/chirally broken phase at very large B consistent with pQCD 
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Figure 6: The phase diagram of our model for various values of x and for c = 0.4. T and B are
measured in units of ⇤.

Figure 7: Magnetic susceptibility as a function of temperature for di↵erent values of x for c = 0.4.

using our holographic model. As we argue below studying the behavior of the condensate

on x is helpful in this quest. As mentioned in the Introduction, magnetic field influences
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For c=0.4



Testing the valence vs. sea explanation
Iatrakis, Jarvinen, Nijs, UG ’16
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Figure 8: Left: The normalized condensate in the confined phase (T = 0) for B/⇤2 = 3 as a
function of x. Increasing x tends to decatalyze the condensate for larger B. The large B behavior
of the condensate is mainly determined by the backreaction of the flavor to the geometry. Right:
The normalized chiral condensate as a function of B in the confined phase (T = 0) for di↵erent
values of x. The condensate always increases, but for higher x the rate of increase becomes smaller.
At x = 0.01 the background is essentially the same as the Yang-Mills case with no flavor. Then,
the tachyon is a↵ected only by the explicit B dependence in Eq. (A.6). As a result the condensate
is catalyzed by B for x = 0.01.

with our identification, because the backreaction e↵ect is absent for such small values and it

should be the explicit dependence of the tachyon equation on B that controls the physics.

It may seem confusing that the normalized condensate always increases with B in this

figure. There is no contradiction however: as mentioned above, in the large Nc limit the

temperature dependence in the deconfined phase drops out, hence the plots in 8 are in fact

for T = 0. Indeed lattice studies also always find magnetic catalysis for small T. It would

be nice to study behavior in the deconfined and chirally broken phase at small x, but this

phase does not exist in our model for small x, as can be seen from Fig. 6.

5. Summary and Discussion

In this work we study the influence of an external magnetic field on a strongly interacting,

confining theory of quarks and gluons in the large Nc, large Nf limit with vanishing quark

masses. We focused on two related problems: dependence of the quark condensate on the

magnetic field, and the phase diagram of the theory on the B-T plane. We employed a

bottom-up holographic model of QCD, known as V-QCD. This model perfectly suits our

problem as it displays all the salient features of QCD: confines color and breaks the chiral

symmetry at low temperatures, correctly reproduces the running of the coupling constant,

exhibits a first order deconfinement and a second order chiral symmetry restoration tran-

sition with increased T and agrees almost perfectly with thermodynamic studies on the

lattice. Holographic modeling necessitates the large Nc limit. For finite number of flavors

then, e↵ect of the magnetic field on the system would be negligible. Thus we consider

the Veneziano limit where the ratio x = Nf/Nc is kept constant in the large-Nc limit.

The holographic model therefore includes the full backreaction of the flavor branes on the

background geometry. The model is necessarily complicated yet manageable.
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Two separate dependence on B:  

 

1.Explicit dependence in the EOM for τ

2.Implicit dependence through the background fields

Tempting to identify    1 with the valence     2 with the sea 

At large B explicit dependence vanishes ⟹ sea quarks  
B influences background functions only through x ⟹ large x, more sea quarks 

Isolate the valence contribution: 

Holography supports the valence vs. sea explanation



Finite μ
Jarvinen, Nijs, UG ’17

• Deconfined/chiral asymmetric phase enlarged at finite μ 

• Separation between confinement and χSB scales shrink at larger B  
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Figure 1. The phase diagram on the (µ, T )-plane at di↵erent values of the magnetic field.

at finite µ. We find that it is present in our model,
also at finite µ, albeit in a small range close to zero,
as can be seen from figure 3. As observed in [29] and
very recently discussed in detail in the case of the Sakai-
Sugimoto model [30] in [20], magnetization can be used
to distinguish the magnetic and inverse magnetic cataly-
sis. We also present our findings regarding the behavior
of the quark condensate and magnetization in this sec-
tion. Finally, in the last section we summarize our results
and provide an outlook.

HOLOGRAPHIC QCD MODEL

We model the system of strongly coupled quarks and
gluons in the large Nc limit by a so-called “bottom-up”
model of holographic QCD — a five dimensional gravi-
tational system tuned by hand to reproduce the salient
features of QCD in the IR [31–33]. This model, which
originally only described the glue sector of QCD, was ex-
tended to include the quark sector [34, 35] in [22, 36] with
number of flavors are also taken to be large in correlation
with the number of colors as in (1). Thus, the 5D gravi-
tational action contains two parts, corresponding to the
two sectors, glue and flavor:

S = Sg[gµ⌫ ,�] + xSf [gµ⌫ ,�, ⌧, L
a
µ, R

a
µ, Vµ] ,

where x is the flavor to color ratio defined in (1), which
we fix as x = 1 in this work. The gravitational action
contains one 5D bulk field corresponding to the most
important marginal or relevant operators of QCD up
to spin-two. These are the metric for the stress ten-
sor, the dilaton for the scalar glueball operator trG2,
a complex scalar ⌧ for the quark condensate hq̄qi and

non-Abelian gauge fields La
µ, Ra

µ and Vµ for the left
and right chiral currents conserved under the symmetry
SU(Nf )L ⇥ SU(Nf )R and the baryon number U(1)B .
We introduce [37] the baryon chemical potential µ and a
uniform magnetic field B in the x3 direction through the
bulk gauge field dual to this baryon number:

Vµ = (�(z),�x2B/2, x1B/2, 0, 0),

where z is the holographic direction, and the boundary
value of the scalar potential gives the baryon chemical
potential µ = �(0), [29, 38]. The actions Sg and Sf

above are taken precisely the same as in [29, 38, 39] with
the potential parameter c defined in [29] fixed as c = 0.4
so that the phase diagram at µ = 0 qualitatively agrees
with lattice results. These actions are complicated and
not illuminating, thus, we refer the interested reader to
[29, 38] for details. It is worth mentioning that the model
contains an energy scale ⇤, that corresponds to the dy-
namically generated energy scale of QCD, which appears
as an integration constant in the equations of motion.
Here we use this integration constant to define the dimen-
sionless combinations T/⇤, µ/⇤ and B/⇤2. The physical
value of ⇤ is very close to 1 GeV.

PHASE DIAGRAM AND SOUND SPEED

Thermodynamic properties of our holographic model
follows from the holographic action evaluated on a given
background solution. According to the AdS/CFT dic-
tionary this corresponds to evaluating the free energy
of the system in a given state. It is straightforward to
check that the gravitational solutions satisfy the first law
of thermodynamics dF = �sdT �ndµ�MdB where s, n

x=1, c=0.4



Speed of sound at finite μ and B

• Jumps at the phase boundaries 

• Tends to increase both with μ and B

• Exceeds the conformal value 1/3 generically

• Limits to 1/3 from below at larger T, in agreement with earlier results 
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Figure 2. The speed of sound squared c2s as a function of temperature for di↵erent values of the magnetic field and the chemical
potential. Numerical noise from these curves has been eliminated by using a high-momentum cuto↵ in Fourier space.

and M are the entropy, baryon charge density and mag-
netization. In practice we calculate the free energy by
first evaluating, s, n and M — which is easier for a dual
black-hole solution — and then using the first law to inte-
grate. An interesting phase diagram (at zero quark mass)
results from competition between the following phases, as
shown in figure 1:
i) a horizonless geometry with a non-trivial profile for ⌧ ,
called the “thermal gas” that corresponds to the chirally
broken confined hadron gas, shown as green,
ii) a black-hole solution with a non-trivial profile for
⌧ , that corresponds to a deconfined quark-gluon plasma
where the chiral symmetry is broken, shown as blue,
iii) a black-hole solution with trivial ⌧ , that corresponds
to a deconfined quark-gluon plasma with restored chiral
symmetry, shown as pink.

First, we notice that phase ii) which appears only in
limited region of the phase diagram in the case µ = 0
of [29], extends into a sizeable part of the phase space at
µ > 0. Second, we note that the deconfinement transition
(between green and blue regions in the figure) is a↵ected
little by B for smaller values of T . Essentially the e↵ect
of B on the deconfinement transition is only significant
when it merges with the chiral symmetry restoration for
B >⇠ ⇤2. We also observe that chiral symmetry restora-
tion, becomes first order between 0 < µ/⇤ <⇠ 0.1 as B
grows. The first order line develops a second order end-
point and the second order transition branches o↵ of the
first order line (see inset in figure 1).

Another thermodynamic observable that is very sensi-
tive to the phase structure is the speed of sound, cs in
the strongly interacting plasma. We study the speed of
sound in the direction of the magnetic field, which can be

computed by evaluating the derivative �dF/d✏ keeping
n/s and B fixed. One obtains,

c2s =
s dT + n dµ

T ds+ µ dn+B dM

����
n/s,B

.

The result is shown in figure 2 as a function of T , µ and
B. We observe that cs exhibits a jump precisely at the
first and second order phase boundaries in figure 1. We
also find that it is enhanced by both µ and B almost in
the entire range of the parameter space. On the other
hand, its dependence on T is quite non-monotonic. As a
side remark, we find that the conformal value of c2s = 1/3
is crossed at various places somewhat unexpected from,
but not in contradiction with, the findings of [40, 41]. We
checked that at the large T — not visible in figure 2 —
c2s approaches the conformal value from below for all µ
and B considered in accordance with [40, 41].

INVERSE MAGNETIC CATALYSIS

As discussed in the Introduction, a pressing issue is
the dependence of the quark condensate on the magnetic
field at finite chemical potential. One way to analyze this
problem is to study the chiral transition temperature —
the phase boundary between the green or blue regions
with the pink region in figure 1 — as a function of B and
µ in more detail. In the figure 3 (top), we observe that for
su�ciently small µ the chiral transition temperature in
fact decreases with B, indicating inverse magnetic catal-
ysis. For larger values of µ magnetic catalysis takes over.
In 3 (bottom) we compare the regions of the phase space
near small B where these e↵ects take place. We conclude
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Chiral condensate at finite μ

• B facilitates the chiral transition for μ < 0.1⇒ inverse catalysis for small μ  

• Magnetic catalysis instead at μ > 0.1

• A small region of inverse magnetic catalysis in the phase diagram

4

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

T �
/�

�/�

B/�2 = 0
B/�2 = 1
B/�2 = 5

B/�2 = 10

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

Figure 3. Top: The chiral transition temperature T� as a
function of chemical potential for di↵erent values of the mag-
netic field. Note that at large chemical potential, there is
magnetic catalysis, while at small chemical potential, there is
inverse magnetic catalysis. Bottom: Region where (inverse)
magnetic catalysis occurs for small B, which is here defined
by the sign of hq̄qiB/⇤2=0.1 � hq̄qiB/⇤2=0.

that, increasing µ makes it harder for inverse magnetic
catalysis to occur in general. Another observation from
figure 3 (top) is that the interval in µ, where T� decreases
with B, grows with increasing B. Therefore the region
where inverse catalysis is found, which is somewhat lim-
ited in the case of small B of figure 3 (bottom), expands
significantly as B increases.

We can also directly evaluate the quark condensate in
our holographic model. As explained in [29], this can be
read o↵ from the near boundary asymptotics of the bulk
complex scalar field ⌧ that is dual to the quark conden-
sate operator. Normalizing the condensate as

⌃(T, µ,B) =
hq̄qi(T, µ,B)

hq̄qi(0, 0, 0) ,

we plot in figure 4 its dependence on T for various choices

of µ and B. We observe that it always decreases with T ,
making discontinuities at phase transitions in figure 1.
The reason for the absence of T dependence of ⌃ in the
confined phase (green phase in figure 1) is because this
dependence is suppressed with 1/N2

c in our model in the
large N limit [29, 42]. One can also check that this figure
is consistent with our observation of the inverse magnetic
catalysis close to the chiral transition temperature. For
example for µ = 0.05⇤ and T = 0.12⇤ the condensate
attains a finite value at B/⇤2 = 5 while it vanishes at
B/⇤2 = 10.
Finally, as observed in [29] and [20] and discussed in de-

tail in the latter paper, magnetization can be utilized to
distinguish the magnetic and the inverse-magnetic catal-
ysis. In particular, whether the transition temperature
increases or decreases with B is correlated with whether
the magnetization jumps up or down across a first order
transition. Similarly for a second order phase transition,
e.g. the dashed curves in figure 1, one finds that

sign

✓
dT�

dB

◆
= sign

✓
dM(T� + ✏)

dT
� dM(T� � ✏)

dT

◆
,

using the fact that the di↵erence between the entropies
�S(T�(B), B) = 0 for a second order transition. We
observe in figure 5 that, for example, for small µ, B,
one finds dT�/dB < 0, an indication of inverse magnetic
catalysis. In general, although the kinks in M(T ) are
often too small to be visible in figure 5, the findings agree
with those in figure 3.

DISCUSSION

There are two main results in our paper. First is the
phase diagram of a large-N holographic QCD theory with
full-backreaction from the quark sector at finite temper-
ature, baryon chemical potential and magnetic field, cf.
figure 1. We considered massless quarks and fixed the fla-
vor to color ratio, equation (1) to be unity in this work.
Generalization to massive quarks and study of the phase
diagram at di↵erent values of x are two immediate future
directions. Also, we have disregarded the possibility of
inhomogeneous phases in this work. Whether they can
occur and compete with the phases we obtained here is
an interesting question. We have checked the thermody-
namic stability of all the phases shown in figure 1. It is
remarkable that the phase ii) (blue region in figure 1),
which is the deconfined plasma phase with broken chiral
symmetry seems to be a universal prediction of a variety
of holographic models [22, 35, 43–45]. We find that this
phase is also present at every finite B and moreover it
covers a larger part of the phase diagram for larger B.
Our second main result is that inverse magnetic cataly-

sis that is observed on the lattice simulations [16] at van-
ishing µ is also present at finite µ. However, it is impor-
tant to point out the di↵erences in the definitions of this
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Dynamics induced by anisotropy

• Anisotropic QGP produced in off-central collisions 

due to different pressure gradients


• Does anisotropy act similar to B? 

• How to distinguish the effects of anisotropy from B?

⟹ consider an anisotropic but neutral plasma


B



A heuristic discussion
Jarvinen, Nijs, Pedraza, UG ‘18

Introduce anisotropy through space dependent θ-term: θ=a z  

of the condensate on the magnetic field in the holographic context, including [39–51]. In
[45], in particular, the authors gave a heuristic explanation of the IMC inspired by the afore-
mentioned competition between the valence v.s the sea quarks but translated in the gravity
language. Just as in (1.1), there are two contributions that can be separately recognized [45]
in the gravitational description as well. The first one, “valence” comes from explicit depen-
dence of the open string tachyon equation of motion on B, that is the bulk field dual to the
condensate, while the second, “sea” refers to an indirect effect coming from the backreaction
of B on the geometry. The authors of [45] pointed out that is natural to identify the former
explicit dependence with the valence, and the latter, implicit dependence with the sea con-
tributions, respectively. If true, then, it would imply that the backreaction contribution is
responsible for the IMC.

In this paper we consider a holographic QCD theory with no external magnetic field but
with anisotropy. One way to introduce anisotropy to the system is to turn on a relevant (or
marginal) operator that (i) depends explicitly on one of the spatial directions and (ii) couples
only to the color degrees of freedom. Indeed, this kind of deformation has been previously
considered in the context of holography, e.g. in [1, 52, 53] for massless quark flavors. In
these papers the authors considered a ✓-parameter (which sources the pseudo-scalar operator
TrF ^ F ) that depends linearly in one of the spatial directions, ✓pxq “ a x3, as a way to
introduce anisotropy into the system.

Now let us see that the field theory with this spatially dependent ✓ term and massless
quarks can also be put in a form similar to (1.2), hence the expectation value of the quark
condensate can again be split into the valence and the sea parts as above. Consider the
generating function of QCD both with a nontrivial ✓ term and an external axial gauge field
A5:

ZrA5, ✓s “
ª
DqDA

a
e

´ ≥
LrAa,qs`A5¨J5`✓Tr‹F^F (1.6)

where LrAa
, qs is the Lagrangian for the massless QCD and J

5 is the anomalous chiral current.
We do not turn on an external electric gauge field for simplicity. Let us call the anomaly
coefficient ca i.e. we have the non-conservation equation

d ‹ J5 “ ca TrF ^ F . (1.7)

This generating function enjoys invariance under the generalized chiral transformation5

A5 Ñ A5 ` d�5, ✓ Ñ ✓ ´ ca�5 . (1.8)

Therefore a nontrivial space dependent ✓ term, ✓ “ ax3 can be set to zero by turning on an
external axial gauge field A5,µ “ a{ca�3µ. This means that the action expectation value of
the quark condensate in the theory with ✓ “ ax3 and A5 “ 0, which we considered in the

5
It is easy to realize this symmetry in the holographic dual by introducing a Stückelberg scalar coupled to

the gauge field that corresponds to J5. We will not do this in this paper for simplicity.
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previous paragraph, can be written as

xq̄qya “ 1

Zpaq

ª
DA

a
µe

´Sg detp {DpaqqTr p {Dpaqq´1
, (1.9)

where
{Dpaq “ �

µ
`
Bµ ` A

a
µT

a
˘

` a

ca
�
3
�
5
. (1.10)

This is again in the form 1.2 where the anisotropy enters the inverse propagator linearly and
the contribution of a to the quark condensate can be divided into the valence and the sea
parts as above.

Anisotropic confining gauge theories were revisited in the holographic approach recently
in [1]. One of the important lessons of this paper was that, in the color sector, the anisotropic
deformation reduces the confinement-deconfinement phase transition temperature. Since the
effects of B on confinement are qualitatively the same, this result reinforced the intuition
of [45], and led to the conjecture that anisotropy by itself could explain the phenomenon of
IMC.6

In order to study the behavior of the chiral condensate xq̄qy in the presence of anisotropy
we have to consider an extra flavor sector on top of the model in [1]. Alternatively, we can
introduce the same anisotropic deformation in the models originally considered in [45], at
zero magnetic field. The difference between these two approaches boils down to the choice of
potentials for the dilaton field. We choose to do the latter, because the choice of potentials is
better motivated than in the former models. In this case, the color sector of the theory is taken
to be Improved Holographic QCD (IHQCD) [54, 55]. This is a bottom-up Einstein-Dilaton
theory with a specific potential for the dilaton, which mimics many of the phenomenological
signatures of QCD. On top of this theory, we also consider a flavor sector based on a pair of
space filling D4´D4 branes [56, 57]. However, since flavor physics is suppressed in the large
Nc limit, one must consider an appropriate limit in order to properly take into account the
backreaction of flavors. Specifically, one must take both Nc Ñ 8 and Nf Ñ 8, while keeping
their ratio x “ Nf{Nc fixed. This is known as the Veneziano limit, and defines the V-QCD
model [58] which is the model we use as the holographic dual of QCD in this paper.

The paper is organized as follows. In section 2 we start by giving a brief overview of the
model, discussing in detail the color and flavor sectors mentioned above, as well as presenting
the relevant equations of motion and constraints. In section 3 we discuss the IR asymptotics
in detail and show, in particular, the drastic effects induced by the anisotropic deformation.
In section 4 we solve numerically the equations of motion and find the relevant anisotropic
black brane solutions. We also study the thermodynamics of the models by working out
the free energy in the canonical ensemble and discussing in detail the role of the anisotropic
deformation. In section 5 we compute various observables of physical interest. First, we

6
A similar effect due to angular momentum, and dubbed as “inverse shear catalysis”, was found in [43];

we point out that angular momentum also induces anisotropy, which we will argue is the underlying physical

reason behind all these phenomena.

– 5 –

of the condensate on the magnetic field in the holographic context, including [39–51]. In
[45], in particular, the authors gave a heuristic explanation of the IMC inspired by the afore-
mentioned competition between the valence v.s the sea quarks but translated in the gravity
language. Just as in (1.1), there are two contributions that can be separately recognized [45]
in the gravitational description as well. The first one, “valence” comes from explicit depen-
dence of the open string tachyon equation of motion on B, that is the bulk field dual to the
condensate, while the second, “sea” refers to an indirect effect coming from the backreaction
of B on the geometry. The authors of [45] pointed out that is natural to identify the former
explicit dependence with the valence, and the latter, implicit dependence with the sea con-
tributions, respectively. If true, then, it would imply that the backreaction contribution is
responsible for the IMC.

In this paper we consider a holographic QCD theory with no external magnetic field but
with anisotropy. One way to introduce anisotropy to the system is to turn on a relevant (or
marginal) operator that (i) depends explicitly on one of the spatial directions and (ii) couples
only to the color degrees of freedom. Indeed, this kind of deformation has been previously
considered in the context of holography, e.g. in [1, 52, 53] for massless quark flavors. In
these papers the authors considered a ✓-parameter (which sources the pseudo-scalar operator
TrF ^ F ) that depends linearly in one of the spatial directions, ✓pxq “ a x3, as a way to
introduce anisotropy into the system.

Now let us see that the field theory with this spatially dependent ✓ term and massless
quarks can also be put in a form similar to (1.2), hence the expectation value of the quark
condensate can again be split into the valence and the sea parts as above. Consider the
generating function of QCD both with a nontrivial ✓ term and an external axial gauge field
A5:

ZrA5, ✓s “
ª
DqDA

a
e

´ ≥
LrAa,qs`A5¨J5`✓Tr‹F^F (1.6)

where LrAa
, qs is the Lagrangian for the massless QCD and J

5 is the anomalous chiral current.
We do not turn on an external electric gauge field for simplicity. Let us call the anomaly
coefficient ca i.e. we have the non-conservation equation

d ‹ J5 “ ca TrF ^ F . (1.7)

This generating function enjoys invariance under the generalized chiral transformation5

A5 Ñ A5 ` d�5, ✓ Ñ ✓ ´ ca�5 . (1.8)

Therefore a nontrivial space dependent ✓ term, ✓ “ ax3 can be set to zero by turning on an
external axial gauge field A5,µ “ a{ca�3µ. This means that the action expectation value of
the quark condensate in the theory with ✓ “ ax3 and A5 “ 0, which we considered in the

5
It is easy to realize this symmetry in the holographic dual by introducing a Stückelberg scalar coupled to

the gauge field that corresponds to J5. We will not do this in this paper for simplicity.

– 4 –

of the condensate on the magnetic field in the holographic context, including [39–51]. In
[45], in particular, the authors gave a heuristic explanation of the IMC inspired by the afore-
mentioned competition between the valence v.s the sea quarks but translated in the gravity
language. Just as in (1.1), there are two contributions that can be separately recognized [45]
in the gravitational description as well. The first one, “valence” comes from explicit depen-
dence of the open string tachyon equation of motion on B, that is the bulk field dual to the
condensate, while the second, “sea” refers to an indirect effect coming from the backreaction
of B on the geometry. The authors of [45] pointed out that is natural to identify the former
explicit dependence with the valence, and the latter, implicit dependence with the sea con-
tributions, respectively. If true, then, it would imply that the backreaction contribution is
responsible for the IMC.

In this paper we consider a holographic QCD theory with no external magnetic field but
with anisotropy. One way to introduce anisotropy to the system is to turn on a relevant (or
marginal) operator that (i) depends explicitly on one of the spatial directions and (ii) couples
only to the color degrees of freedom. Indeed, this kind of deformation has been previously
considered in the context of holography, e.g. in [1, 52, 53] for massless quark flavors. In
these papers the authors considered a ✓-parameter (which sources the pseudo-scalar operator
TrF ^ F ) that depends linearly in one of the spatial directions, ✓pxq “ a x3, as a way to
introduce anisotropy into the system.

Now let us see that the field theory with this spatially dependent ✓ term and massless
quarks can also be put in a form similar to (1.2), hence the expectation value of the quark
condensate can again be split into the valence and the sea parts as above. Consider the
generating function of QCD both with a nontrivial ✓ term and an external axial gauge field
A5:

ZrA5, ✓s “
ª
DqDA

a
e

´ ≥
LrAa,qs`A5¨J5`✓Tr‹F^F (1.6)

where LrAa
, qs is the Lagrangian for the massless QCD and J

5 is the anomalous chiral current.
We do not turn on an external electric gauge field for simplicity. Let us call the anomaly
coefficient ca i.e. we have the non-conservation equation

d ‹ J5 “ ca TrF ^ F . (1.7)

This generating function enjoys invariance under the generalized chiral transformation5

A5 Ñ A5 ` d�5, ✓ Ñ ✓ ´ ca�5 . (1.8)

Therefore a nontrivial space dependent ✓ term, ✓ “ ax3 can be set to zero by turning on an
external axial gauge field A5,µ “ a{ca�3µ. This means that the action expectation value of
the quark condensate in the theory with ✓ “ ax3 and A5 “ 0, which we considered in the

5
It is easy to realize this symmetry in the holographic dual by introducing a Stückelberg scalar coupled to

the gauge field that corresponds to J5. We will not do this in this paper for simplicity.

– 4 –

invariant under

because of the anomaly

Rotate θ into the quark propagator:  

Do valence and sea also have opposite effects? 



Holographic, anisotropic, non-conformal, neutral plasma  
Giataganas, Pedraza, UG ‘17

2

twist in this story indicating that IMC may occur even
in uncharged plasmas.

Transport properties also exhibit surprising qualitative
features. In particular, as we show in section 5, the but-
terfly velocity violates the “universal bound” conjectured
in [21, 22].

2. Holographic setup. The gravitational theory dual
to our anisotropic field theory is defined by the Einstein-
Axion-Dilaton action with generic functions V and Z
that determine the potential energy for the dilaton field
� and its coupling to the axion field �:

S =
1

22

Z
d5x

p
�g [R+ LM ] , (1)

LM = �
1

2
(@�)2 + V (�)�

1

2
Z(�)(@�)2, (2)

where 2
⇠ 1/N2. Crucially, a linear axion ansatz au-

tomatically satisfies the equations of motion and breaks
isotropy while preserving translation invariance:
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Figure 7. �⌃pT, aq as a function of a for several constant T values, with x “ Nf {Nc “ 1. Note the
large slope of the T {⇤ “ 0.14 curve near a{⇤ “ 0. This happens because this temperature is very
close to the critical end point of the first order phase transition, which occurs at a{⇤ „ 0.01. Some
small numerical noise was removed from this figure by fitting to a polynomial.

is first a decrease of the condensate with B, and then an increase.13 The decrease of the
condensate (inverse magnetic catalysis) with a magnetic field was discovered on the lattice
[30, 32]. The analogous behavior we observe here is therefore evidence for the claim made in
[1], namely that a possible cause for the inverse magnetic catalysis is the anisotropy, which
can be induced by the magnetic field as in the lattice studies or explicitly as we do in this
paper. What we see is that just the presence of anisotropy has the same effect as the magnetic
field. We thus call this behavior “inverse anisotropic catalysis”.

5.2 Particle spectra

We observe from the phase diagram, figure 4, that anisotropy may destroy confinement even at
relatively low values of a{⇤. In this section we analyze this phenomenon further by discussing
how the meson and glueball states (at zero temperature) melt as a is increased. Dissociation
of mesons due to anisotropy has also been studied in other holographic models [79, 80].

We will discuss the particle spectrum in the helicity two glueball tower which is relatively
easy to analyze. We have also computed that the spectral functions in other sectors, including
all flavored states, and helicity one flavor singlet states, and find a similar behavior to that
of the helicity two glueballs. The fluctuations in these additional sectors are presented in
Appendix C.

13
In [45], there is also a direct coupling of the magnetic field to the condensate, in addition to the backreaction

through the geometry. This direct effect was found to always increase the condensate, in agreement with lattice

results [37]. An analogous direct coupling is absent in this work.
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Conclusions I

• Holography reproduces inverse magnetic catalysis generically

• Supports valence vs. sea competition


Valence ⇔ explicit dependence in the tachyon equation

Sea ⇔ implicit dependence through background functions


• Inverse magnetic catalysis only for small μ

• Inverse anisotropic catalysis: 


source of IMC anisotropy rather than charge dynamics caused by B ?  

• New phases: confined-chiral symmetric, anisotropic confinement




Part II: Chern-Simons diffusion rate
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Perturbative result:  

N=4 sYM: 
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Frequency and momentum dependence
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Conclusions II

• Improved holographic models predict larger ΓCS

• Nontrivial ω and k depence ⇒ spatial modulation of ΓCS 




Part III: Spin currents in QGP



ω ~ 1022 s-1

Strong vortical structure

Spin-hydrodynamics



Global spin polarization
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LETTER RESEARCH

The vorticity is currently of intense interest, since it is a key ingredi-
ent in theories that predict observable effects associated with chiral 
symmetry restoration and the production of false quantum chromo-
dynamics vacuum states5. Spin–orbit coupling can generate a spin 
alignment, or polarization, along the direction of the vorticity in the 
local fluid cell, which, when averaged2,3 over the entire system, is par-
allel to Ĵsys. Thus, polarization measurements of hadrons emitted from 
the fluid can be used to determine ωω≡ .

It is difficult to measure the spin direction of most hadrons emitted 
in a heavy ion collision. However, Λ and Λ  hyperons are ‘self-analysing’. 
That is16, in the weak decay Λ → p + π−, the proton tends to be emitted 
along the spin direction of the parent Λ. If θ* is the angle between the 
daughter proton (antiproton) momentum ∗pp and the Λ (Λ ) polariza-
tion vector (H in the hyperon rest frame, then

θ
α θ= +

∗
∗(Nd

d cos
1
2 (1 cos ) (1)H H

The subscript H denotes Λ or Λ , and the decay parameter17 
α α=− = . ± .Λ Λ 0 642 0 013  . The angle θ* is indicated in Fig. 3, in which  
Λ hyperons are depicted as tops spinning about their polarization 
direction.

The polarization of the hyperon in its rest frame depends on the 
vorticity of the fluid element (in the laboratory frame3,18) and thus may 
depend on the momentum of the emitted hyperons. However, when 
averaged over all phase space, symmetry demands that (H  is parallel 
to Ĵsys. Because our limited sample sizes prohibit exploration of these 
dependencies, our analysis assumes that (H is independent of momen-
tum, and we extract only an average projection of the polarization on 
Ĵsys. This average may be written7 as

α

φ φ
≡ ⋅ =

π

−∗

((
( )

J
R

ˆ 8 cos
(2)J

H H sys
H

p ˆ

EP
(1)

sys

where φ Ĵsys
 is the azimuthal angle of the angular momentum of the 

collision, φ∗p is the azimuthal angle of the daughter proton (antiproton) 
momentum in the Λ Λ( ) rest frame, and REP

(1) is a factor that accounts 
for the finite resolution7 with which we determine φ Ĵsys

. The overbar on 
( H denotes an average over events and the angle brackets denote the 
momenta of Λ hyperons detected in the TPC. Equation (2) is strictly 
valid only in a perfect detector; angle-dependent detection efficiency 
requires a correction factor7 that shifts the results in the present ana lysis 
by about 3%.

A relativistic heavy ion collision can produce several hundred 
charged particles in our detectors. For a given energy, a head-on col-
lision produces the maximum number of emitted particles, while a 
glancing one produces only a few. To concentrate on collisions with 
sufficient overlap to produce a fluid with large angular momentum, we 
select events producing an intermediate number of tracks in the TPC. 
Of all observed collisions 20% produce more tracks than the collisions 
studied here, while 50% produce fewer; in the parlance of the field, this 
is known as a 20–50% centrality selection.

Equation (2) quantifies an average alignment between hyperon spin 
and a global feature of the collision and is hence a “global polarization”2. 
This is distinct from the well known phenomenon of Λ polarization 
at very forward angles in proton–proton collisions19. The polarization 
direction from this latter effect depends on Λ momentum and not the 
global angular momentum; it has zero magnitude at mid-rapidity.

The solid symbols in Fig. 4 show our new measurements as a func-
tion of collision energy, sNN . Systematic uncertainties are shown  
as boxes and are generally smaller than statistical ones. Λ hyperons in 
the rapidity region |yΛ| < 1.0 and transverse momentum 0.4 < pT <  
3.0 GeV/c are used in the analysis. The peak in the invariant mass dis-
tribution at mΛ is about five times the background level, and the inte-
grated Λ contribution in our selected mass window is about twice that 
of the combinatoric background. Our results have been corrected for 
the ‘diluting’ effect of this combinatoric background. At each energy, a 
positive polarization at the level of 1.1–3.6 times the statistical uncer-
tainty is observed for both Λ and Λ . Taken in aggregate, the data are 
statistically consistent with the hypothesis of energy-independent 
polarization of 1.08 ± 0.15 (stat) ± 0.11 (sys) and 1.38 ± 0.30 
(stat) ± 0.13 (sys) per cent for Λ and Λ , respectively. Some models pre-
dict that the polarization may decrease with collision energy4,20,21. 
While our data are consistent with such a trend, increased statistics 
would be required to test these predictions definitively. Also shown as 
open symbols in Fig. 4 are previously published7 measurements at  

sNN  = 62.4 GeV and 200 GeV. The null result reported7 may be seen  
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Figure 2 | A single Au + Au collision in the STAR TPC. Charged 
particles from a collision ionize the gas in the TPC, forming tracks that 
curve in the magnetic field of the detector. The tracks are reconstructed in 
three dimensions, making them relatively easy to distinguish, but are 
projected onto a single plane in this figure. As the tracks exit the outer 
radius, they leave a signal in the time-of-flight detector. The species of 
charged particles is determined by the amount of ionization in the TPC 
and the flight time as measured by time of flight. Charged daughters from 
the weak decay Λ → p + π− are extrapolated backwards, and the parent is 
identified through topological selection. A clear peak at the Λ mass, 
obtained by summing over many events, is observed in the invariant-mass 
distribution π−mp, .
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Figure 3 | A sketch of a Au + Au collision in the STAR detector system. 
The vorticity of fluid created at mid-rapidity is suggested. The average 
vorticity points along the direction of the angular momentum of the 
collision Ĵsys. This direction is estimated experimentally by measuring the 
sidewards deflection of the forward- and backward-going fragments and 
particles in the beam–beam counter detectors. Λ hyperons are depicted as 
spinning tops; see text for details. Obviously, elements in this depiction are 
not drawn to scale: the fluid and beam fragments have sizes of a few 
femtometers, whereas the radius of each beam–beam counter is about 1 m.
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The vorticity is currently of intense interest, since it is a key ingredi-
ent in theories that predict observable effects associated with chiral 
symmetry restoration and the production of false quantum chromo-
dynamics vacuum states5. Spin–orbit coupling can generate a spin 
alignment, or polarization, along the direction of the vorticity in the 
local fluid cell, which, when averaged2,3 over the entire system, is par-
allel to Ĵsys. Thus, polarization measurements of hadrons emitted from 
the fluid can be used to determine ωω≡ .

It is difficult to measure the spin direction of most hadrons emitted 
in a heavy ion collision. However, Λ and Λ  hyperons are ‘self-analysing’. 
That is16, in the weak decay Λ → p + π−, the proton tends to be emitted 
along the spin direction of the parent Λ. If θ* is the angle between the 
daughter proton (antiproton) momentum ∗pp and the Λ (Λ ) polariza-
tion vector (H in the hyperon rest frame, then
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The subscript H denotes Λ or Λ , and the decay parameter17 
α α=− = . ± .Λ Λ 0 642 0 013  . The angle θ* is indicated in Fig. 3, in which  
Λ hyperons are depicted as tops spinning about their polarization 
direction.

The polarization of the hyperon in its rest frame depends on the 
vorticity of the fluid element (in the laboratory frame3,18) and thus may 
depend on the momentum of the emitted hyperons. However, when 
averaged over all phase space, symmetry demands that (H  is parallel 
to Ĵsys. Because our limited sample sizes prohibit exploration of these 
dependencies, our analysis assumes that (H is independent of momen-
tum, and we extract only an average projection of the polarization on 
Ĵsys. This average may be written7 as
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where φ Ĵsys
 is the azimuthal angle of the angular momentum of the 

collision, φ∗p is the azimuthal angle of the daughter proton (antiproton) 
momentum in the Λ Λ( ) rest frame, and REP

(1) is a factor that accounts 
for the finite resolution7 with which we determine φ Ĵsys

. The overbar on 
( H denotes an average over events and the angle brackets denote the 
momenta of Λ hyperons detected in the TPC. Equation (2) is strictly 
valid only in a perfect detector; angle-dependent detection efficiency 
requires a correction factor7 that shifts the results in the present ana lysis 
by about 3%.

A relativistic heavy ion collision can produce several hundred 
charged particles in our detectors. For a given energy, a head-on col-
lision produces the maximum number of emitted particles, while a 
glancing one produces only a few. To concentrate on collisions with 
sufficient overlap to produce a fluid with large angular momentum, we 
select events producing an intermediate number of tracks in the TPC. 
Of all observed collisions 20% produce more tracks than the collisions 
studied here, while 50% produce fewer; in the parlance of the field, this 
is known as a 20–50% centrality selection.

Equation (2) quantifies an average alignment between hyperon spin 
and a global feature of the collision and is hence a “global polarization”2. 
This is distinct from the well known phenomenon of Λ polarization 
at very forward angles in proton–proton collisions19. The polarization 
direction from this latter effect depends on Λ momentum and not the 
global angular momentum; it has zero magnitude at mid-rapidity.

The solid symbols in Fig. 4 show our new measurements as a func-
tion of collision energy, sNN . Systematic uncertainties are shown  
as boxes and are generally smaller than statistical ones. Λ hyperons in 
the rapidity region |yΛ| < 1.0 and transverse momentum 0.4 < pT <  
3.0 GeV/c are used in the analysis. The peak in the invariant mass dis-
tribution at mΛ is about five times the background level, and the inte-
grated Λ contribution in our selected mass window is about twice that 
of the combinatoric background. Our results have been corrected for 
the ‘diluting’ effect of this combinatoric background. At each energy, a 
positive polarization at the level of 1.1–3.6 times the statistical uncer-
tainty is observed for both Λ and Λ . Taken in aggregate, the data are 
statistically consistent with the hypothesis of energy-independent 
polarization of 1.08 ± 0.15 (stat) ± 0.11 (sys) and 1.38 ± 0.30 
(stat) ± 0.13 (sys) per cent for Λ and Λ , respectively. Some models pre-
dict that the polarization may decrease with collision energy4,20,21. 
While our data are consistent with such a trend, increased statistics 
would be required to test these predictions definitively. Also shown as 
open symbols in Fig. 4 are previously published7 measurements at  

sNN  = 62.4 GeV and 200 GeV. The null result reported7 may be seen  
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Figure 2 | A single Au + Au collision in the STAR TPC. Charged 
particles from a collision ionize the gas in the TPC, forming tracks that 
curve in the magnetic field of the detector. The tracks are reconstructed in 
three dimensions, making them relatively easy to distinguish, but are 
projected onto a single plane in this figure. As the tracks exit the outer 
radius, they leave a signal in the time-of-flight detector. The species of 
charged particles is determined by the amount of ionization in the TPC 
and the flight time as measured by time of flight. Charged daughters from 
the weak decay Λ → p + π− are extrapolated backwards, and the parent is 
identified through topological selection. A clear peak at the Λ mass, 
obtained by summing over many events, is observed in the invariant-mass 
distribution π−mp, .
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Figure 3 | A sketch of a Au + Au collision in the STAR detector system. 
The vorticity of fluid created at mid-rapidity is suggested. The average 
vorticity points along the direction of the angular momentum of the 
collision Ĵsys. This direction is estimated experimentally by measuring the 
sidewards deflection of the forward- and backward-going fragments and 
particles in the beam–beam counter detectors. Λ hyperons are depicted as 
spinning tops; see text for details. Obviously, elements in this depiction are 
not drawn to scale: the fluid and beam fragments have sizes of a few 
femtometers, whereas the radius of each beam–beam counter is about 1 m.
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⟹ hydrodynamic description?  

Global spin polarization



Tµ⌫ S�
µ⌫
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Slow variables: energy-momentum and spin current

Earlier work: Becattini et al ’08; Becattini, Piccinini ’08 
Karabali, Nair ’14 
Florkowski et al ’18 ’19; Hattori, X.-G. Huang et al ’19 
Gallegos, UG ’19; Li, Stephanov, Yee ’20 

Hydrodynamics with spin current
Gallegos, Yarom, UG `21



Hydrodynamics with torsion
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• Metric couples to energy-momentum, contorsion sources spin :



Hydrodynamics with torsion
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!ab
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µ +Kab
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• Metric couples to energy-momentum, contorsion sources spin :

• Hydrodynamics on a manifold with non-trivial torsion:  
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Hydrodynamic equations
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10 dynamical variables: 

Spin “chemical”  
potential
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Conformal spin hydro

Equations of motion + constitutive relations: determine T, u and µαβ 

Need: initial conditions + transport coefficients
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Application to HIC

Polarization of hyperon:   
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Application to HIC

Polarization of hyperon:   
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Spin hydrodynamics  ⟹ spin potential 
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Conclusions III

• Spin-hydrodynamics: a novel theory of relativistic hydro


• Belinfante-Rosenfeld ambiguity fixed by torsion

• Reproduces observed global polarization of hyperons 


Gallegos, Yarom, UG ’22 
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Holography 
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Chiral condensate at finite μ

• μ decreases the condensate at fixed B 

• B generically increases the condensate, except around Tχ and for μ < 0.1

• No T dependence in the confined phase, due to 1/N2 suppression
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Figure 4. The normalized chiral condensate ⌃ as a function of temperature for di↵erent values of the magnetic field and the
chemical potential.

Figure 5. The magnetization divided by the magnetic field strength as a function of T , µ, and B. The B = 0 result should be
interpreted as the limit approaching B = 0. The crosses denote the locations of the second-order chiral transitions. Here M
has been normalized so that MT=0,µ=0 = 0 for every B.

phenomenon in the literature. In our work, we follow the
definition following the lattice findings [16], that is, we
define inverse magnetic catalysis as the weakening of the
quark condensate, and related to this, the decrease in the
chiral transition temperature T� with increasing B. We
observe both of these e↵ects. The original work of Preis
et al. [46] and the most recent follow up [20], both using
the Sakai-Sugimoto model [30] define the phenomenon as
the decrease in the critical chemical potential with B for
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also been seen in approximations to QCD which are di-

rectly based on field theory (see, e.g., [47]). Notice also
that we observe inverse catalysis at relatively low values
of µ, where the sign problem is probably surmountable.
Therefore we expect that it will be possible to check our
results on the lattice.

We do not dwell into the technicalities of our calcula-
tions in this Letter. Our calculations are based on the
gravitational background described in [29] in detail. This
background is obtained by solving Einstein’s equations
numerically, and it is necessarily complicated since it in-
volves backreaction of the flavor branes. To facilitate our
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FIG. 1. Free energy as a function of T for di↵erent values
of the anisotropy parameter a/j = 0, 1, 3 (black, blue and
red curves respectively). The parameters � =

p
2/3 + 1/10,

� = 1/5, � = 3 were chosen such that the undeformed the-
ory is confining. The horizontal axis corresponds to the con-
fined state while all other branches correspond to deconfined
phases. The insets show details of an additional phase tran-
sition for large a, as discussed in the text.

where cIR is a constant and T is the Hawking temperature

T =
|3 + (1� ✓)/z|

4⇡rH
. (15)

Notice that the values z and ✓ are constrained by the bulk
null energy condition and the positivity of the specific
heat CV = d log s/d log T as follows:

(z � 1)(1 + 3z � ✓) � 0 , (16)

✓2 + 3z(1� ✓)� 3 � 0 , (17)

2z + 1� ✓ � 0 . (18)

Combining these inequalities, we observe that for z � 1

the value of ✓ is bounded from above ✓  ✓(�)
bound while

for z  0 it is bounded from below ✓ � ✓(+)
bound, with

✓(±)
bound =

1

2

⇣
3z ±

p
3
p
4� 4z + 3z2

⌘
. (19)

The range 0 < z < 1 is forbidden altogether. Thus, one
derives interesting universal bounds on the IR scaling
behavior of strongly interacting anisotropic plasmas from
holography.

4. Thermodynamics. Questions pertaining thermal
equilibrium are answered by working out the free energy
in the canonical ensemble, which, in the holographic de-
scription equals the Euclidean gravitational action (1)
appended by the Gibbons-Hawking and counterterm ac-
tions, evaluated on-shell. The counterterms in a generic
Einstein-Axion-Dilaton theory were worked out in detail
in [35] whose results we use but do not show here. Al-
ternatively, one can calculate the background subtracted
free energy directly by integrating the first law of ther-

FIG. 2. Phase diagram of the system in the a� T plane. We
observe two phases, confined and “plasma I”, for a/j < 2.08.
For larger a/j there exist three phases, confined, “plasma I”
and “plasma II”. The blue and red curves indicate lines of
first order transitions.

modynamics dF = �sdT for j and a held fixed [36].

In figure 1 we plot numerical results for the free energy
as a function of T for a particular confining theory. We
will divide the analysis in two cases, small a/j and large
a/j. For small a up to a/j ⇡ 2.08 there are three com-
peting phases. First, there is the confining ground state
heated up to temperature T . The corresponding gravita-
tional background is obtained from the black brane solu-
tion (3) by sending the mass to zero. This is the so-called
thermal gas solution and is our reference background for
the free energy computation. More specifically, the free
energy of this phase is O(N0), therefore it corresponds
to the horizontal axis F = 0. Second, we observe two
phases of free energy O(N2). These are the deconfined,
plasma phases corresponding to black brane solutions (3)
with a non-trivial blackening factor. One of these solu-
tions, the “small black brane” (upper branches in figure
1 for a/j = 0, 1) is always subdominant in the ensemble
and can be ignored. Moreover this phase is thermody-
namically unstable since CV / �d2F/dT 2 < 0, as can
be read from the figure. The “big black brane” solution
(lower branches in figure 1 for a/j = 0, 1) dominates the
ensemble for T > Tc. Tc here is given by the point where
the curves cross F = 0. Therefore the system is in the
deconfined phase above the critical temperature Tc. This
plasma phase is denoted as “plasma I” in figure 2. Be-
low Tc the system is in the confined phase. This phase
transition is of confinement/deconfinement type and it is
of first order. All of this is in accordance with improved
holographic QCD [37, 38].

For a/j > 2.08 the phase structure becomes more com-
plicated. As shown in figure 1 for the choice a/j = 3,
there exists now four di↵erent black brane branches with
free energy O(N2) instead of the aforementioned two so-
lutions, the small and the big black branes for a/j < 2.08.
It is apparent from figure 1 that two of them have pos-
itive specific heat, analog of the “big black brane” so-
lution in the small a case. These two solutions are de-
noted as “plasma I” and “plasma II” in figure 2. There
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• Tc decreases with anisotropy

• A new plasma phase and two phase boundaries
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twist in this story indicating that IMC may occur even
in uncharged plasmas.

Transport properties also exhibit surprising qualitative
features. In particular, as we show in section 5, the but-
terfly velocity violates the “universal bound” conjectured
in [21, 22].

2. Holographic setup. The gravitational theory dual
to our anisotropic field theory is defined by the Einstein-
Axion-Dilaton action with generic functions V and Z
that determine the potential energy for the dilaton field
� and its coupling to the axion field �:

S =
1

22

Z
d5x

p
�g [R+ LM ] , (1)

LM = �
1

2
(@�)2 + V (�)�

1

2
Z(�)(@�)2, (2)

where 2
⇠ 1/N2. Crucially, a linear axion ansatz au-

tomatically satisfies the equations of motion and breaks
isotropy while preserving translation invariance:

ds2 = e2A(r)


�f(r)dt2 + d~x2

? + e2h(r)dx2
3 +

dr2

f(r)

�
, (3)

� = �(r), � = a x3. (4)

The solution is asymptotically AdS near the bound-
ary r ! 0 where A ! � log r, f ! 1, h ! 0 and
� ! j r4�� [23]. This solution generally corresponds to
a non-conformal gauge theory whose IR dynamics dom-
inated by the stress tensor Tµ⌫ dual to the metric and
a scalar operator O ⇠ TrF 2, similar to the scalar glue-
ball operator in QCD (when it is marginal), here dual to
the field �. We call the source of this operator j. The
theory is in turn deformed by a space-dependent theta
term Õ ⇠ ✓(x3)TrF ^ F dual to the field �. The 5D
Einstein-Axion-Dilaton theory can be realized in terms
of D3/D7 branes in IIB string theory when V = 12 and
Z = e2� [3–5]. In this case the underlying field theory is
conformal. We are however interested in non-conformal,
in particular confining gauge theories that follow from a
more generic choice of the potentials V and Z [24, 25].
A choice of the form [26, 27]

V (�) = 12 cosh(��) + b�2, Z(�) = e2��, (5)

with b ⌘
�(4��)

2 � 6�2, corresponds to a gauge theory
with a scalar operator of scaling dimension � that con-
fines color in the vacuum state for � �

p
2/3 [25].

We observe that the holographic version of the c-
theorem [28] in QFT (or rather the “a-theorem” in 4D
[29]) has a natural generalization in the anisotropic holo-
graphic theories. Introducing the domain-wall coordinate
du = exp(A(r))dr we find that

d

du

⇢✓
dA

du
+

1

3

dh

du

◆
e

h
3

�
 0 , (6)

which follows from Einstein’s equations. Imposing the
bulk null energy condition (NEC) recovers (6) but also
leads to an additional monotonicity constraint,

d

du

✓
dh

du
eh+4A

◆
 0 , (7)

which can be used to define a second independent central
charge for anisotropic theories (see also [30–32]). Both
expressions inside the brackets of (6) and (7) are mono-
tonically decreasing and, while the first one reduces di-
rectly to dA/du in the isotropic limit h ! 0, any lin-
ear combination between them may give the holographic
analog of the a-function [28].

3. Scaling solutions in the IR. The RG energy scale
of the dual QFT in the ground state is determined by
the scale factor A of the metric (3) [33], which exhibits
a non-trivial dependence on the holographic coordinate
r when the potentials V and Z are not constant. The
IR region r ! 1 corresponds to small values of exp(A)
where the dilaton grows [34] monotonically [24]. In this
limit V ⇠ 6 e�� for � � 0. We can derive the following
scaling solutions in the IR limit:

ds2 = L̃2(ar)2✓/3z

�dt2 + d~x2

? + dr2

a2r2
+

c1 dx2
3

(ar)2/z

�
, (8)

� = c2 log(ar) + �0. (9)

Here L̃, c1 and c2 are constants depending on z and ✓,
which are given in terms of � and � as

z =
4�2

� 3�2 + 2

2�(2� � 3�)
, ✓ =

3�

2�
. (10)

These constants also depend on the free parameter �0

which is set by the value of the source j. For ✓ = 0 the
solution exhibits a Lifshitz-like scaling

t ! �t, ~x? ! �~x?, r ! �r, x3 ! �
1
z x3 . (11)

For ✓ 6= 0, the metric (8) has the hyperscaling violation
property and transforms covariantly under (11) as

ds ! �✓/3zds . (12)

When the IR theory is connected to a heat bath, one ob-
tains the finite temperature version of the scaling metric,
which is now a black brane with blackening factor

f(r) = 1�

✓
r

rH

◆3+(1�✓)/z

, (13)

where rH is the location of the horizon. The black brane
metric is obtained by multiplying the dt2 term by f and
the dr2 term by 1/f in (8). The entropy density of the
plasma in the IR is obtained from the area of the horizon,

s = cIR a�2� 1�✓
z T 2+ 1�✓

z /2 , (14)
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Figure 3. Free energy F {⇤4 as a function of T {⇤ for x “ 0 and various values of the anisotropic
parameter a{⇤. The curves develop a characteristic swallow tail behavior at intermediate temperatures,
with a first order phase transition connecting two different branches of black hole solutions, I and II,
which dominate the small T {⇤ and large T {⇤ regimes, respectively. At very small temperature, the free
energy and entropy density scale as F 9´T

3 and s9T
2, respectively, while for very large temperature

they scale as F 9 ´ T
4 and s9T

3. All the thermodynamic quantities jump discontinuously at the
transition. Only for a “ 0 the thermal gas solution dominates at small temperature.

up to three black hole solutions with free energies of order OpN2
c q. Two of these solutions

are sub-dominant in the ensemble, and the third one dominates in this regime. iii) At large
enough temperatures there is only one black hole solution —in addition to the thermal gas
solution— which dominates the ensemble. Since the geometry is asymptotically AdS5 the
free energy and entropy density at very high temperatures, T {⇤ " 1, scale as F 9 ´ T

4 and
s9T

3, respectively. Altogether, if one follows the dependence of the dominant phase as a
function of T , one finds a single first order phase transition connecting two different branches
of black hole solutions, I and II as shown in Figure 3, that dominate at small and large
temperatures, respectively.

In the limit a Ñ 0 the free-energy of the black hole solutions I in figure 3 apparently
vanishes which suggests that they approach the thermal gas solution. This is indeed the case:
the horizon is pushed deeper and deeper in the IR as a decreases, and disappears from the
limiting solution. Therefore the thermodynamics approaches smoothly that of the standard
symmetric (a “ 0) IHQCD [72, 73] and the black hole phase I is replaced by the thermal gas
solution. This is also consistent with the analysis of the zero temperature IR geometry in the
same limit in section 3.2.2.

In Figure 4 we plot phase diagrams for some representative values of x “ Nf{Nc. Specif-
ically, the values that we consider are the following: x “ 0, x “ 1{3, x “ 2{3 and x “ 1,
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Figure 4. Phase structure of anisotropic holographic QCD in the Veneziano limit, for different
values of the ratio x “ Nf {Nc. We distinguish between different branches of black hole solutions that
dominate in the different regimes of a{⇤ and T {⇤ (separated by a first order or second order transition),
chirally symmetric and chirally broken phases, and confined/deconfined phases as indicated by the
behavior of the quark-antiquark potential. See the main text for a detailed explanation.

respectively. In these diagrams, the black solid lines correspond to a first order transition
between two black hole solutions. Such a transition is present for the x “ 0 case (discussed
in the previous paragraph) regardless the value of the anisotropic parameter a{⇤. We notice
that for x “ 1{3 and x “ 2{3 this transition eventually becomes second order at large enough
anisotropies, while for x “ 1, one can distinguish two transitions, one of first order (which
disappears at large anisotropies) and another one of second order. The second order transi-
tions are shown as black dashed lines. Curiously, the second order line eventually becomes
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x=0

• F ~ -T4 at large T; F ~ -T3 at small T

• Very different than a=0 case 

• Black hole is “confining” 

  

• Tχ decreases with a generically

• Possibility of anisotropic confinement 

• Quantum critical point for x=1/3

• Possibility of a confined chirally symmetric phase!?
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Lattice QCD, NJL effective theory, holography 

I.

II.

III. eB ⌧ ⇤2
QCD

Fundamental scales at vanishing temperature and density

1/
p
eB

⇤QCD(B)

mdyn(B)
<latexit sha1_base64="Og1ZiNWw9ku+JtMrM9W+5XjnlOQ="></latexit>

Magnetic screening length

Confinement scale 

Dynamically generated quark mass

mdyn ⌧ k ⌧
p
eB
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Separation of scales: χSB

confinement



QCD in strong B (regime I)

Magnetic screening 

Gluon polarisation at |k|2<< |eB| dominated by quarks at LL0 over gluons and ghosts

k
M2

g ⇡ (2Nu +Nd)
↵s

3⇡
|eB|
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Landau quantization

En(kz) = ±
p
m2 + 2|eB|n+ k2z
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Dynamics effectively reduce 3+1 —> 1+1

kz

LL0 LL1 LL2 LL3

kx

ky

Color charge effectively screened in the regime 

…

mdyn ⌧ k ⌧
p
eB

Degeneracy of states ~ |eB|



Magnetic catalysis in strong B
Three energy regimes 

k �
p
eB

UV of QCD w/o B
{

k ⌧ mdyn

{

pure glue,

anisotropic confinement

mdyn ⌧ k ⌧ eB
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Relevant for magnetic catalysis

{

• Regimes relevant for χSB and confinement are separate at finite B!  

Dynamically generated quark mass:  Miransky, Shovkovy ‘15

≃ + x

• Solve the gap equation (improved rainbow approx) to obtain  mdyn at  eB � ⇤2
QCD
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Figure 11: (Color online) The dynamical masses of the u-quarks (red color) and d-quarks (green color) as functions of the magnetic field for Nc = 3
and two different choices of the number of flavors: (i) Nu = 1 and Nd = 2 (solid lines), and (ii) Nu = 2 and Nd = 2 (dashed lines). The result may
not be reliable in the weak magnetic field region (shaded) where the running coupling constant becomes strong (αs ! 0.1). The values of masses
are given in units of ΛQCD = 250 MeV.

where eq is the electric charge of the q-th quark and Nc is the number of colors. The numerical factors C1 and C2
equal 1 in the leading approximation that we use. Their value, however, can change beyond this approximation and
we can only say that they are of order 1. The constant cq is defined as follows:

cq =
1
6π
(2Nu + Nd)
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, (264)

where Nu and Nd are the numbers of up and down quark flavors, respectively. The total number of quark flavors is
Nf = Nu + Nd. The strong coupling αs in the last equation is related to the scale

√
|eB|, i.e.,

1
αs
" b ln

|eB|
Λ2QCD

, where b =
11Nc − 2Nf

12π
. (265)

We should note that in the leading approximation the energy scale
√
|eB| in Eq. (265) is fixed only up to a factor of

order 1.
After expressing the magnetic field in terms of the running coupling, the result for the dynamical mass takes the

following convenient form:

m2q " 2C1
∣

∣

∣

∣

∣

eq
e

∣
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∣

∣

∣

Λ2QCD

(

cqαs
)2/3

exp
[

1
bαs
−

4Ncπ
αs(N2c − 1) ln(C2/cqαs)

]

. (266)

As is easy to check, the dynamical mass of the u-quark is considerably larger than that of the d-quark. It is also
noticeable that the values of the u-quark dynamical mass becomes comparable to the vacuum value m(0)dyn " 300 MeV
only when the coupling constant gets as small as 0.05.

Now, by trading the coupling constant for the magnetic field scale |eB| using Eq. (266), we get the dependence
of the dynamical mass on the value of the external field. The numerical results are presented in Fig. 11 [we used
C1 = C2 = 1 in Eq. (266)].

As one can see in Fig. 11, the value of the quark mass in a wide window of strong magnetic fields, Λ2QCD $ |eB| "
(10 TeV)2, remains smaller than the dynamical mass of quarks m(0)dyn " 300 MeV in QCD without a magnetic field. In
other words, the chiral condensate is partially suppressed for those values of a magnetic field. The explanation of this,
rather unexpected, result is actually simple. The magnetic field leads to the mass Mg (262) for gluons. In a strong
enough magnetic field, this mass becomes larger than the characteristic gap Λ in QCD without a magnetic field (Λ,
playing the role of a gluon mass, can be estimated as a few times larger than ΛQCD). This, along with the property of
the asymptotic freedom (i.e., the fact that αs decreases with increasing the magnetic field), leads to the suppression of
the chiral condensate.
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Dynamically generated quark mass for   eB � ⇤2
QCD

<latexit sha1_base64="xFV750joJRjI/+S/QwPUVsPsKvo=">AAAB/3icdVDLSgMxFM3UV62vUcGNm2ARXJWZtrR1V1oXLly0YB/QGYdMmrahmQdJRihjF/6KGxeKuPU33Pk3ZtoRVPRA4HDOPdyb44aMCmkYH1pmZXVtfSO7mdva3tnd0/cPuiKIOCYdHLCA910kCKM+6UgqGemHnCDPZaTnTpuJ37slXNDAv5azkNgeGvt0RDGSSnL0I9KwxmNoXanIEDlxu3kxvylCR88bhUrFrFXPoVEwFkhI1TDLJWimSh6kaDn6uzUMcOQRX2KGhBiYRijtGHFJMSPznBUJEiI8RWMyUNRHHhF2vLh/Dk+VMoSjgKvnS7hQvydi5Akx81w16SE5Eb+9RPzLG0RyVLNj6oeRJD5eLhpFDMoAJmXAIeUESzZTBGFO1a0QTxBHWKrKcqqEr5/C/0m3WDBLhWK7nK830jqy4BicgDNggiqog0vQAh2AwR14AE/gWbvXHrUX7XU5mtHSzCH4Ae3tE5EPlSw=</latexit>

Nc , Nf ! 1, x =
Nf

Nc
= const.
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Remark II: ’t Hooft limit is trivial, need to take Veneziano limit: 

Remark I: Typically magnetic catalysis mdyn / eB
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But pQCD with resummation may exhibit inverse behaviour 
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Connection to Polyakov loop

• Testing the valence vs. sea idea: Bruckmann, Endrodi, Kovacs ‘13

Here the condensate is defined in terms of the partition function, which is given by the path integral
over gauge configurations U as

Z(B) =

Z
DU e�Sg det( /D(B) +m), (2.2)

where Sg denotes the gauge action. For the sake of clarity, here we consider only one fermion
flavor with charge q and mass m, and suppress factors of 1/4, which appear due to the rooting
procedure for staggered quarks. The temperature and the three-volume are given as T = (aNt)�1

and V = (aNs)3 with Ns (Nt) the number of lattice sites in the spatial (temporal) direction, and a

the lattice spacing. We remark that since the magnetic field couples only to the electric charges of
quarks, it enters exclusively in the combination qB.

Expanding the derivative in Eq. (2.1), the condensate is obtained as

 ̄ (B) =
1

Z(B)

Z
DU e�Sg det( /D(B) +m)Tr( /D(B) +m)�1, (2.3)

showing that the magnetic field indeed appears both in the determinant and in the operator itself.
To separate these dependences, we define the valence and sea condensates as

 ̄ val(B) =
1

Z(0)

Z
DU e�Sg det( /D(0) +m)Tr( /D(B) +m)�1,

 ̄ sea(B) =
1

Z(B)

Z
DU e�Sg det( /D(B) +m)Tr( /D(0) +m)�1.

(2.4)

We note that valence condensates can be used to define dressed Wilson loops [37], which are directly
related to the QCD string tension in the large mass limit.

Any physically consistent theory has to have the same valence and sea fermion content. Thus,
at first sight it does not seem possible to separate the valence and sea effects of the magnetic field
in a well-defined theory. One can, nevertheless, exactly reproduce the condensates in Eq. (2.4)
by alluding to techniques from partially quenched QCD [38–40] (and quenched disorder [41, 42]).
Using commuting spin 1/2-fields (so-called ghost quarks), one can generate inverse Dirac determi-
nants in the functional integral. With adjusted charges and masses, these inverse determinants can
cancel ‘unwanted’ determinants in the path integral, arriving at the valence and sea condensates
of Eq. (2.4). From a different point of view, one can also directly obtain the sea condensate in a
theory with an electrically charged and a neutral fermion flavor, by looking at the condensate of the
neutral fermion in the presence of the magnetic field. Since B appears in the determinant of the
charged flavor, but not in the neutral propagator, this indeed isolates the sea effect. Even though
in QCD all fermion species are electrically charged, on the technical level of the lattice theory, the
valence and sea effects are naturally separated. We will use a similar argument in App. A to discuss
the renormalization of the sea and valence condensates.

To discuss the effect of the external magnetic field, we are interested in the change of the
condensates due to a nonzero B. This change is given by the difference

�⌃(B) =
2m

M2
⇡F

2

⇥
 ̄ (B)�  ̄ (0)

⇤
. (2.5)

This combination is particularly useful, because both additive and multiplicative divergences cancel
in it. Based on the Gell-Mann-Oakes-Renner relation, the normalization is chosen such that �⌃ is
measured in units of the condensate at zero magnetic field and zero temperature [22]. We define
�⌃val and �⌃sea in a similar manner from Eq. (2.4). At B = 0 the three types of condensate
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Figure 1. The valence (left panel) and sea (right panel) contributions to the up quark condensate as a
function of the magnetic field, calculated at two different temperatures. The two temperatures are chosen to
be well below and around Tc. The different symbols correspond to three different lattice spacings (decreasing
as Nt grows).

are obviously equal. Furthermore, for small magnetic fields (assuming analyticity in qB), the two
contributions appear additively in the total condensate [19],

�⌃(B) ' �⌃val(B) +�⌃sea(B), (2.6)

showing that this separation indeed makes sense, at least for small magnetic fields. In App. A we
show that �⌃val and �⌃sea are both properly renormalized.

In Fig. 1, we show how the valence condensate �⌃val (left panels) and the sea condensate �⌃sea

(right panels) for the up quark depend on the magnetic field, at two different temperatures. The
two temperatures were chosen to be well below and just below the transition temperature. Clearly,
the magnetic field in the valence Dirac operator enhances the condensate at both temperatures. In
contrast, the sea effect enhances the condensate only well below Tc, whereas around Tc it suppresses
it. Eventually – around T = 160 MeV – the sea contribution becomes the dominant one, resulting
in a decrease in the total condensate and thus inverse magnetic catalysis [22]. Fig. 1 contains
results for three different lattice spacings, showing that the effect persists in the continuum limit
as well. This is in sharp contrast to the findings of ref. [18], where an enhancement was found at
all temperatures, for larger-than-physical quark masses. In Secs. 2.1 and 2.2, we discuss how the
underlying mechanism responsible for the valence and the sea effects can be understood, based on
eigenvalues of the Dirac operator at nonzero magnetic fields.

2.1 The valence effect

The valence effect can be easily understood by inspecting how the low part of the spectral density
⇢(�) of the Dirac operator depends on the magnetic field in any gauge field background. To be
specific, we use a set of gauge field backgrounds generated at zero magnetic field, but the qualitative
picture is the same in any reasonable ensemble of gauge fields.

In Fig. 2, we plot the spectral density of the Dirac operator for three different values of the
(valence) magnetic field, as measured on Nt = 6 lattices, generated at B = 0 and T = 142 MeV.
This gauge field ensemble corresponds to the Nt = 6, T = 142 MeV data for the valence condensate
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Figure 2. The spectral density of the Dirac operator around zero, computed at three different values of
the magnetic field. In all three cases, the gauge configurations were generated without the magnetic field in
the quark determinant.

in Fig. 1. One can clearly see the increase of the spectral density and, thus, of the valence con-
densate with the magnetic field. We remark that the same behavior is reproduced for any gauge
background, independent of the temperature and magnetic field, which was used for the generation
of the configuration. In other words, this means that the change in the valence condensate �⌃val

is always positive. We note that a similar proliferation of low Dirac eigenmodes already occurs in
the free theory, see the discussion in App. B. Moreover, a remarkable feature of the free spectrum
on the lattice is that the eigenvalue pattern as a function of the magnetic field is similar to the
so-called Hofstadter butterfly, the energy levels of Bloch electrons in a magnetic field [43].

2.2 The sea effect

The sea effect arises, because the magnetic field in the quark determinant changes the relative
weight of the gauge configurations, and is therefore equivalent to a reweighting in B. In general,
reweighting is a technique that uses configurations generated at a given (starting) point of the
parameter space, and assigns a new weight to each configuration, in a fashion that the resulting
ensemble describes the system at a new (target) point of the parameter space. Thus, the expectation
value of an arbitrary observable O at the target point is obtained in terms of measurements on the
configurations generated at the starting point. Here, we will consider the B = 0 system as the
starting point, and the B > 0 system as the target ensemble. For this case, the difference of weights
equals the ratio of quark determinants at B and at B = 0, and the exact rewriting of the expectation
value at B reads

hOiB =
Z(0)

Z(B)
·

1

Z(0)

Z
DUe�Sg det

�
/D(0) +m

� det( /D(B) +m)

det( /D(0) +m)
O

=
D
e��Sf (B)

O

E

0

.D
e��Sf (B)

E

0
,

(2.7)

where the subscript of the expectation value indicates the value of the magnetic field, at which the
ensemble is generated. Here, we defined the change in the fermionic action due to the magnetic
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Figure 6. Left panel: the temperature- and magnetic flux-dependence of the renormalized Polyakov loop
in the continuum limit. The solid lines represent curves of constant magnetic field (eB ⇠ NbT 2 values as in
the right panel). Right panel: the dependence of Pr on the temperature around the crossover region. The
different types of curves indicate lattice results obtained with different lattice spacings (different temporal
extents). The shaded areas show the continuum extrapolations together with their uncertainty.

loop as a function of T , along a line of constant eB, an interpolation between the different fluxes
Nb is necessary. We carry out this interpolation in a systematic manner, by fitting our data points
for all temperatures, magnetic fluxes and lattice spacings altogether by a lattice spacing-dependent,
two-dimensional spline function. A similar spline fit is described in ref. [46]. Due to the scaling
properties of the action we use, the dependence on the lattice spacing is expected to be quadratic.
We incorporated this in the fit by having two parameters on each node point as p1+ p2 · a2. Taking
eB = const. slices of this two-dimensional surface at a certain a gives the Polyakov loop for that
particular lattice spacing, while the a = 0 surface corresponds to the continuum limit.

In the left panel of Fig. 6, we plot the continuum extrapolated renormalized Polyakov loop Pr

as a function of the temperature and the magnetic flux. The solid lines upon the surface correspond
to eB = 0, eB = 0.45 GeV2 and eB = 0.75 GeV2 slices. In the right panel of the figure, we
show the temperature dependence of Pr for these magnetic fields on the three lattice spacings,
together with the continuum extrapolation. The shaded bands represent here the uncertainty of
the continuum extrapolated Pr. The results clearly show, that the Polyakov loop increases sharply
with the magnetic field around Tc, and that this feature persists in the continuum limit as well. As
an empirical finding from that figure, inflection points of these curves are not very precisely defined,
but the transition temperature from the renormalized Polyakov loops clearly decreases with the
magnetic field.

In the previous sections, we saw that low Dirac modes are the key to understanding inverse
magnetic catalysis. To complete the picture, we would like to discuss one more point, namely
the relationship between the low Dirac modes and the Polyakov loop. It is well-known that light
dynamical fermions break the Z(3) center symmetry of the quenched theory, by forcing the system
into the real Polyakov loop sector. This can be most easily understood starting from a free field
picture. If the gauge field background is trivial – apart from a spatially constant Polyakov loop – the
lowest Dirac eigenmodes are constant in space, and change smoothly in the time direction to fulfill
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Finite density 
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?
• New phases? 

• Magnetic catalysis at finite density?

• Urgent call: upcoming RHIC isobar, FAIR, NICA experiments  
• Lattice suffers from the sign problem




Inverse anisotropic catalysis
Jarvinen, Nijs, Pedraza, UG ‘18

Improved holographic QCD in the Veneziano limit with anisotropy
Same as before, with μ=0, B=0 but θ=a z with 

Z(�) = 1 + e4�/10

IR geometry is “rolling” AdS4 x R: assuming broken chiral symmetry

a/� = 0.0001
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Figure 1. The holographic RG flow of the coupling in the IR regime at x “ 0. Left: The exact
numerically constructed flow (solid curves) compared to the flow given by Eq. (3.13) (dashed curves)
for several values of a. Right: The RG flows for various a (dashed curves, computed from (3.13))
compared to the asymptotic result of Eq. (3.20) (black solid curve).

We first discuss the asymptotic IR behavior of the geometry which can be solved analyt-
ically by using the flow equations. This has been worked out for more generic potentials and
higher order corrections in [68]. In order to find the asymptotics, we substitute the potentials
in the flow equations, i.e., we take Vg 9VIRe

4�{3?
� and Z 9ZIRe

4�. We obtain

�
1pAq » ´ 3

16�pAq , e
2ppAq » 9e´ 4�pAq

3

VIR

a
�pAq , a

2
e

´2ÄW pAq » 2VIRe
´ 8�pAq

3

a
�pAq

3ZIR
(3.19)

up to corrections suppressed by 1{�. Integrating these equations, we obtain the asymptotics
for the metric factors and �:

e
A „ 1

r
e

´
?

plog rq{6´plog log rq{8
, e

W`A “ e
ÄW „ e

?
p2 log rq{3´plog log rq{8

, � „
a

p3 log rq{8 .

(3.20)
These formulas describe an approximate AdS4 ˆ R geometry with multiplicative correc-

tions of the form e
#

?
log r. It is instructive to write down the string frame metric:

ds
2
s “ e

4�{3
ds

2
E „ 1

r2
plog rq´1{8 “

´dt
2 ` dx

2
1 ` dx

2
2 ` dr

2
‰

`e

?
p3 log rq{2plog rq´1{8

dx
2
3 . (3.21)

Notice the cancellation of the square roots in the warp factor, after which the first term is
the AdS4 metric with multiplicative logarithmic corrections.

3.2.2 Numerical analysis of the IR RG flows

Numerically solving the flow equations (3.13)–(3.17) leads to an accurate description of the
IR behavior of the model. We demonstrate this in Fig. 1 (left), where we compare numerically
the RG flow of the coupling obtained by solving the EoSs exactly to that given by the flow
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Theory of slow variables

3

interested in a macroscopic dynamical process of the
system at a finite temperature, will these gapless de-
grees of freedom remain the relevant IR variables?
(Throughout this review we restrict to systems in
a phase which is translationally and rotationally in-
variant, i.e. macroscopically a (quantum) liquid.)

The answer is no. At a finite temperature, there is
now a background bath of such gapless modes. Any
additional excitation will quickly be “swallowed” by
the bath, and cannot have any direct macroscopic
e↵ect. In other words, while it takes little energy
to create such an excitation, it becomes incoherent
quickly. The typical time scale (and length scale)
for such an excitation to become “incoherent” de-
fines the relaxation time ⌧ (and relaxation length
`).2 In the dispersion relation of such an excitation,
the frequency should have a finite imaginary part
of order 1/⌧ to reflect a lifetime of order ⌧ and be-
comes “gapped,” thus the standard lore that finite
temperature generates a gap for all excitations.

There is, however, a caveat. Consider a long wave
length perturbation of a system away from equilib-
rium, i.e. with wavelength � � `. Then at a time of
order ⌧ , typical non-conserved quantities will have
relaxed back to equilibrium. But for a conserved
quantity, which cannot be destroyed locally, relax-
ation back to equilibrium can only be achieved by
transports. See Fig. 1 (a) and (b). As a result it
will take time t� � ⌧ for a conserved quantity to
relax. In particular, as � ! 1, t� ! 1. Thus for
macroscopic physical processes involving spacetime
scales much larger than ⌧ and `, the only relevant IR
variables are those associated with conserved quanti-
ties, as non-conserved quantities can be considered
as in equilibrium.

More precisely, non-conserved quantities should
be considered as in “local equilibrium” defined by
the conserved quantities. To see this, consider a re-
gion of size �x satisfying ` ⌧ �x ⌧ � in a time range
⌧ ⌧ �t ⌧ t�. The variations of conserved quantities

2 For most systems in nature, ⌧ and ` are microscopic, i.e.
much smaller than macroscopic spacetime scales of physical
interests. In this review we will focus on such systems. Of
course what one means by microscopic and macroscopic are
relative. A somewhat extreme example is the Quark-Gluon
Plasma (QGP) created at RHIC or LHC. The size of a QGP
droplet is tiny, of order 10fm, but defines the “macroscopic
scale” of interest. The typical relaxation length of the QGP
is about 1fm, which qualifies as being microscopic compared
with the size. For a strongly interacting system, typically
⌧ ⇠ 1

� where � is the inverse temperature.

in this spacetime region are small and can be consid-
ered as approximately uniform. Recall that an equi-
librium state is specified by the values of conserved
quantities such as energy and charge. Non-conserved
quantities in this spacetime region should then be
regarded as relaxing into the local equilibrium state
specified by the local values of conserved quantities.
In other words, conserved quantities are low vari-
ables which provide the background for fast relax-
ing non-conserved quantities. In a non-equilibrium
EFT, we integrate out fast variables and concentrate
on the dynamics of slow variables.

FIG. 1. Relaxation of di↵erent types of excitations. The
horizontal direction is along some spatial direction. The
straight dashed lines denote the global equilibrium values
and the solid lines denote values of some perturbed quan-
tities. (a) Perturbations in non-conserved quantities can
relax back to equilibrium values locally–deviations sep-
arated at length scales larger than the relaxation length
` relax independently–in a time of order of the relax-
ation time ⌧ . (b) Conserved quantities can only relax
through transports, i.e. excesses have to be transported
to regions with deficits to achieve equilibrium. (c) In a
spacetime region with ` ⌧ �x ⌧ �, ⌧ ⌧ �t ⌧ t� a sys-
tem can be considered as in local equilibrium specified
by the local values of conserved quantities.

So far we talked about generic situations. In
certain special situations there can be additional
non-conserved slow variables. For example, when
a system is tuned to a (finite temperature) criti-
cal point, the order parameter(s) experiences critical
slow-down. Its relaxation scales become much larger
than those of typical non-conserved quantities. Such
non-conserved slow variables should also be kept in

• Decompose φ = φUV + φIR, integrate out φUV  ⟹  Effective theory for φIR  

• Local field theory W[φIR] for lmfp × ∂φIR = lmfp × L  ≪ 1 

• At thermal equilibrium, generic φIR decoheres in τrelax    

except conserved quantities: charge, energy, momentum… 


