Magnetic catalysis, Chern-Simons diffusion and spin transport in QGP

Umut Gürsoy

Utrecht University

AdS4CME workshop, 15/3/2022

Magnetic field

 $B \sim 10^{14}\,B_{MRI}$

Magnetic field $B \sim 10^{14} \, B_{MRI}$

Strong vortical structure

 $\omega \sim 1000\hbar$

Chiral magnetic and vortical effect

Part I: magnetic fields, anisotropic QCD

Open questions

- st Ground state: dependence of $\langle ar{q}q
 angle$ on B (inverse) magnetic catalysis
- * Thermodynamics: phase diagram of QCD at finite B

- * Hydrodynamics and transport: 2 conductivities, 2 shear, 3 bulk viscosities

 B dependence of η, ζ

 Hernandez, Kovtun '17

 Grozdanov, Hofman, Igbal '17
- * Fully back-reacted magneto-hydrodynamics: HIC, neutron star mergers
- * Anomalous transport: chiral magnetic and vortical effects, Chern-Simons diffusion rate
- * Out of equilibrium: initial conditions for hydro, generation of chiral imbalance

Open questions

- st Ground state: dependence of $\langle ar{q}q
 angle$ on B (inverse) magnetic catalysis
- * Thermodynamics: phase diagram of QCD at finite B

- * Hydrodynamics and transport: 2 conductivities, 2 shear, 3 bulk viscosities

 B dependence of η, ζ

 Hernandez, Kovtun '17

 Grozdanov, Hofman, Igbal '17
- * Fully back-reacted magneto-hydrodynamics: HIC, neutron star mergers
- * Anomalous transport: chiral magnetic and vortical effects, Chern-Simons diffusion rate
- * Out of equilibrium: initial conditions for hydro, generation of chiral imbalance

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

- QCD has infinite operators unlike N=4 sYM
- General bulk⇔boundary should apply to QCD for λ≫1
 Polyakov '98 '00
- Integrating out fast modes in the 5D non-critical string
 - ⇒ effective 5D gravity + matter
- IR sum-rules in QCD: OPA semi-closed on relevant/marginal operators

Shifman, Vainshtein, Zakharov '79

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

- QCD has infinite operators unlike N=4 sYM
- General bulk⇔boundary should apply to QCD for λ≫1
 Polyakov '98 '00
- Integrating out fast modes in the 5D non-critical string
 - ⇒ effective 5D gravity + matter
- IR sum-rules in QCD: OPA semi-closed on relevant/marginal operators
 Shifman, Vainshtein, Zakharov '79

Write down a bulk 5D action for $T_{\mu\nu}$, $\operatorname{tr} G^2$, $\operatorname{tr} G \wedge G$, $\bar{q}q$, J_{μ}

Color tube ⇔ fundamental string, flavor ⇔ D5 branes

Determine the potentials + integration const. from the basic features of QCD: Confinement, asymptotic freedom, χSB, gapped discrete spectrum, anomalies

Systematic errors largely reduced by fixing the large field limits of potentials

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

$$S_g = M^3 N_c^2 \int d^5 x \, \sqrt{-g} \left(R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right)$$
 Glue sector $T_{\mu\nu} \quad {
m tr} \, G^2$

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

$$S_g = M^3 N_c^2 \int d^5 x \; \sqrt{-g} \left(R - rac{4}{3} rac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda)
ight)$$
 Glue sector $T_{\mu
u} \; {
m tr} \; G^2$

$$S_f = -rac{1}{2}M^3N_c\mathbb{T}r\int d^4x\,dr\,\left(V_f(\lambda,T^\dagger T)\sqrt{-\det\mathbf{A}_L} + V_f(\lambda,TT^\dagger)\sqrt{-\det\mathbf{A}_R}
ight)$$

$$\mathbf{A}_{LMN} = g_{MN} + w(\lambda, T) F_{MN}^{(L)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T)^{\dagger} (D_N T) + (D_N T)^{\dagger} (D_M T) \right]$$

$$\mathbf{A}_{RMN} = g_{MN} + w(\lambda, T) F_{MN}^{(R)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T) (D_N T)^{\dagger} + (D_N T) (D_M T)^{\dagger} \right]$$

$$V_M = \frac{A_M^L + A_M^R}{2}$$
, $A_M = \frac{A_M^L - A_M^R}{2}$. $D_M T = \partial_M T + iTA_M^L - iA_M^R T$. $U(1)_B \Leftrightarrow \text{magnetic field}$ $U(1)_A$ $\overline{q}q$

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

$$S_g = M^3 N_c^2 \int d^5 x \; \sqrt{-g} \left(R - rac{4}{3} rac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda)
ight)$$
 Glue sector $T_{\mu
u} \; {
m tr} \; G^2$

$$S_f = -rac{1}{2}M^3N_c\mathbb{T}r\int d^4x\,dr\,\left(V_f(\lambda,T^\dagger T)\sqrt{-\det\mathbf{A}_L} + V_f(\lambda,TT^\dagger)\sqrt{-\det\mathbf{A}_R}
ight)$$

$$\mathbf{A}_{LMN} = g_{MN} + w(\lambda, T) F_{MN}^{(L)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T)^{\dagger} (D_N T) + (D_N T)^{\dagger} (D_M T) \right]$$

$$\mathbf{A}_{RMN} = g_{MN} + w(\lambda, T) F_{MN}^{(R)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T) (D_N T)^{\dagger} + (D_N T) (D_M T)^{\dagger} \right]$$

$$V_M = \frac{A_M^L + A_M^R}{2} \ , \ A_M = \frac{A_M^L - A_M^R}{2} \ . \qquad D_M T = \partial_M T + i T A_M^L - i A_M^R T \ .$$

$$U(1)_B \Leftrightarrow \text{magnetic field} \qquad U(1)_A \qquad \qquad \overline{q} \, q$$

$$S_a = -\frac{M^3 N_c^2}{2} \int d^5 x \sqrt{g} Z(\lambda) \left[da - x \left(2V_a(\lambda, T) A - \xi dV_a(\lambda, T) \right) \right]^2$$

$$\operatorname{tr} G \wedge G$$
CP-odd sector

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

$$S_g = M^3 N_c^2 \int d^5 x \; \sqrt{-g} \left(R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right)$$
 Glue sector $T_{\mu\nu} \quad {
m tr} \; G^2$

$$S_f = -rac{1}{2} M^3 N_c \mathbb{T} r \int d^4 x \, dr \, \left(V_f(\lambda, T^\dagger T) \sqrt{-\det \mathbf{A}_L} + V_f(\lambda, TT^\dagger) \sqrt{-\det \mathbf{A}_R}
ight)$$

$$\mathbf{A}_{L\,MN} = g_{MN} + \mathbf{w}(\lambda, T) F_{MN}^{(L)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T)^{\dagger} (D_N T) + (D_N T)^{\dagger} (D_M T) \right]$$

$$\mathbf{A}_{R\,MN} = g_{MN} + w(\lambda, T) F_{MN}^{(R)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T) (D_N T)^{\dagger} + (D_N T) (D_M T)^{\dagger} \right]$$

$$V_M = \frac{A_M^L + A_M^R}{2} \ , \ A_M = \frac{A_M^L - A_M^R}{2} \ . \qquad D_M T = \partial_M T + i T A_M^L - i A_M^R T \ .$$

$$U(1)_B \Leftrightarrow \text{magnetic field} \qquad U(1)_A \qquad \qquad \overline{q} \, q$$

$$S_a = -\frac{M^3 N_c^2}{2} \int d^5 x \sqrt{g} Z(\lambda) \left[da - x \left(2V_a(\lambda, T) A - \xi \, dV_a(\lambda, T) \right) \right]^2$$

$$\operatorname{tr} G \wedge G \qquad \qquad \text{CP-odd sector}$$

Fixing the potentials

- Fix V_g by non-singular IR, linear confinement, linear mass spectrum, lowest glueball mass, $\Delta S(T_c)$

- Fix V_f , $\kappa(\lambda)$ by non-singular IR, qualitative features of the phase diagram in μ and κ , condensate anomalous dimension, chiral anomaly, meson mass spectrum

 Jarvinen, Kiritsis '11; Alho et al '12 '13
- Choose $w(\lambda) = \kappa(c\lambda)$ by conductivity, diffusion const. of the plasma

latrakis, Zahed '12; Alho et al '13

$$w(\lambda) = \kappa(c\lambda) = \frac{(1 + \log(1 + c\lambda))^{-\frac{1}{2}}}{\left(1 + \frac{3}{4} \left(\frac{115 - 16x}{27} - \frac{1}{2}\right)c\lambda\right)^{4/3}}$$

- Fix Z by topological susceptibility, axial glueball spectrum

$$Z(\lambda) = Z_0 \left(1 + c_4 \lambda^4 \right)$$
$$0 \lesssim c_1 \lesssim 5, \quad 0.06 \lesssim c_4 \lesssim 50.$$

Magnetic catalysis

Klevansky, Lemmer '89; Suganuma, Tatsumi '91; Gusynin, Miransky, Shovkovy '94

- B catalyses chiral symmetry breaking
- Generic: QED, NJL, free(!) ... 2+1, 3+1
- B aligns spins, effectively reduces 3+1⇒ 1+1
- Stronger correlation between opposite chiralities

Free chiral fermions in 2+1:

NJL in 3+1(supercritical):

$$\langle \bar{q}q \rangle = \frac{|eB|}{2\pi}$$

$$\langle \bar{q}q \rangle = \langle \bar{q}q \rangle_0 \left(1 + \frac{|eB|^2}{3G^4(\langle \bar{q}q \rangle_0)^4 \log(\Lambda/G\langle \bar{q}q \rangle_0)^2} \right)^{\frac{1}{2}}$$

Gap equation in resummed pQCD

Magnetic catalysis on the lattice

Bali, Schafer et al '11 '12

- B acts destructively for T ≈ T_c
- Inverse effect missed in earlier studies with large m & coarse lattices

D'Elia et al '11

Magnetic catalysis generally

• Banks-Casher relation $\langle \bar{\psi}\psi \rangle = \pi \rho(0)$

$$\langle \bar{\psi}\psi\rangle = \pi\rho(0)$$

Banks, Casher '80

Condensate

⇔ Dirac spectrum around zero

In LL₀ approx

$$\langle \overline{q}q \rangle \propto eB$$

Likely to fail in presence of strong correlations

Magnetic catalysis generally

• Banks-Casher relation $\langle \bar{\psi}\psi \rangle = \pi \rho(0)$

$$\langle \bar{\psi}\psi\rangle = \pi\rho(0)$$

Banks, Casher '80

Condensate

⇔ Dirac spectrum around zero

In LL₀ approx

$$\langle \overline{q}q \rangle \propto eB$$

Likely to fail in presence of strong correlations

• Two competing contributions in general: D'Elia, Negro '11; Bruckmann, Endrodi, Kovacs '13

$$\langle \bar{q}q \rangle = \int \mathcal{D}A e^{-S[A]} \mathrm{det}(D(A,B) + m) \mathrm{tr}(D(A,B) + m)^{-1}$$

Banks-Casher applies to valence contribution ⇒ catalysis Sea contribution acts destructively near $T_c \rightarrow$ decatalysis: Sea prefers A configurations that order the Polyakov loop near T_c ⇒ punishes configurations with small Dirac eigenvalues

Questions for holography

- Valence vs. sea separation fails at larger B, conjecture still holds?
- Lattice does not cover large B, what happens there?
- Are there other mechanisms at work?
- Magnetic catalysis at finite μ?
- Are there new phases at finite T-B-μ?

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

$$S_g = M^3 N_c^2 \int d^5 x \; \sqrt{-g} \left(R - rac{4}{3} rac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda)
ight)$$
 Glue sector $T_{\mu
u} \; {
m tr} \; G^2$

$$S_f = -rac{1}{2}M^3N_c\mathbb{T}r\int d^4x\,dr\,\left(V_f(\lambda,T^\dagger T)\sqrt{-\det\mathbf{A}_L} + V_f(\lambda,TT^\dagger)\sqrt{-\det\mathbf{A}_R}
ight)$$

$$\mathbf{A}_{LMN} = g_{MN} + w(\lambda, T) F_{MN}^{(L)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T)^{\dagger} (D_N T) + (D_N T)^{\dagger} (D_M T) \right]$$

$$\mathbf{A}_{RMN} = g_{MN} + w(\lambda, T) F_{MN}^{(R)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T) (D_N T)^{\dagger} + (D_N T) (D_M T)^{\dagger} \right]$$

$$V_M = \frac{A_M^L + A_M^R}{2} \ , \ A_M = \frac{A_M^L - A_M^R}{2} \ . \qquad D_M T = \partial_M T + i T A_M^L - i A_M^R T \ .$$

$$U(1)_B \Leftrightarrow \text{magnetic field} \qquad U(1)_A \qquad \qquad \overline{q} \, q$$

$$S_a = -\frac{M^3 N_c^2}{2} \int d^5 x \sqrt{g} Z(\lambda) \left[da - x \left(2V_a(\lambda, T) A - \xi dV_a(\lambda, T) \right) \right]^2$$

$$\operatorname{tr} G \wedge G$$
CP-odd sector

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

$$S_g = M^3 N_c^2 \int d^5 x \; \sqrt{-g} \left(R - rac{4}{3} rac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda)
ight)$$
 Glue sector $T_{\mu
u} \; {
m tr} \; G^2$

$$S_f = -rac{1}{2}M^3N_c\mathbb{T}r\int d^4x\,dr\,\left(V_f(\lambda,T^\dagger T)\sqrt{-\det\mathbf{A}_L} + V_f(\lambda,TT^\dagger)\sqrt{-\det\mathbf{A}_R}
ight)$$

$$\mathbf{A}_{LMN} = g_{MN} + w(\lambda, T) F_{MN}^{(L)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T)^{\dagger} (D_N T) + (D_N T)^{\dagger} (D_M T) \right]$$

$$\mathbf{A}_{RMN} = g_{MN} + w(\lambda, T) F_{MN}^{(R)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T) (D_N T)^{\dagger} + (D_N T) (D_M T)^{\dagger} \right]$$

$$V_M = \frac{A_M^L + A_M^R}{2} \ , \ A_M = \frac{A_M^L - A_M^R}{2} \ . \qquad D_M T = \partial_M T + i T A_M^L - i A_M^R T \ .$$

$$U(1)_B \Leftrightarrow \text{magnetic field} \qquad U(1)_A \qquad \qquad \overline{q} \, q$$

$$S_a = -rac{M^3N_c^2}{2}\int d^3x \sqrt{g}\,Z(\Sigma)\left[da - x\left(2V_a(\lambda,T)A - \xi\,dV_a(\lambda,T)
ight)
ight]^2 \ {
m tr}\,G\wedge G$$
 CT-odd sector

Kiritsis, Nitti, UG '07; Kiritsis, Nitti, Mazzanti, UG '08 '09 Jarvinen, Kiritsis '11; Alho et al '12

$$S_g = M^3 N_c^2 \int d^5 x \; \sqrt{-g} \left(R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right)$$
 Glue sector $T_{\mu\nu} \quad {
m tr} \; G^2$

$$S_f = -rac{1}{2}M^3N_c\mathbb{T}r\int d^4x\,dr\,\left(V_f(\lambda,T^\dagger T)\sqrt{-\det\mathbf{A}_L} + V_f(\lambda,TT^\dagger)\sqrt{-\det\mathbf{A}_R}
ight)$$

$$\mathbf{A}_{LMN} = g_{MN} + w(\lambda, T) F_{MN}^{(L)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T)^{\dagger} (D_N T) + (D_N T)^{\dagger} (D_M T) \right]$$

$$\mathbf{A}_{RMN} = g_{MN} + w(\lambda, T) F_{MN}^{(R)} + \frac{\kappa(\lambda, T)}{2} \left[(D_M T) (D_N T)^{\dagger} + (D_N T) (D_M T)^{\dagger} \right]$$

$$V_M = \frac{A_M^L + A_M^R}{2} \ , \ A_M = \frac{A_M^L - A_M^R}{2} \ . \qquad D_M T = \partial_M T + i T A_M^L - i A_M^R T \ .$$

$$U(1)_B \Leftrightarrow \text{magnetic field} \qquad U(1)_A \qquad \qquad \overline{q} \, q$$

Introduce
$$\mu$$
 and B in
$$V_\mu=(V_0(r),-x_2B/2,x_1B/2,0,0)$$
 Quark condensate in
$$\tau=m_q r(-\log\Lambda r)^{-\rho}+\langle\bar qq\rangle(-\log\Lambda r)^{\rho}+\dots$$

Magneto-holographic QCD: inverse magnetic catalysis

Preis, Rebhan, Schmitt '10; Mamo '15; Noronha et al '15; Evans et al '16; latrakis, Jarvinen, Nijs, UG '16;

- Both T_x and T_c generically decrease with B
- Clear sign of inverse magnetic catalysis around $T_\chi \sim T_c$ for small B
- Inverse catalysis more pronounced for small c
- Catalysis comes back at larger B
- T dependence suppressed in the confined phase as 1/N²

Magneto-holographic QCD: phase diagram

latrakis, Jarvinen, Nijs, UG'16

- Generically 3 separate phases with 1st and 2nd order boundaries
- Both T_X and T_c generically decrease with B
- New deconfined/chirally broken phase at very large B consistent with pQCD

Testing the valence vs. sea explanation

latrakis, Jarvinen, Nijs, UG'16

- Two separate dependence on B: 1.Explicit dependence in the EOM for τ
 - 2.Implicit dependence through the background fields

Tempting to identify 1 with the valence 2 with the sea

At large B explicit dependence vanishes ⇒ sea quarks

B influences background functions only through $x \Rightarrow large x$, more sea quarks

Holography supports the valence vs. sea explanation

Finite µ

Jarvinen, Nijs, UG '17

- Deconfined/chiral asymmetric phase enlarged at finite µ
- Separation between confinement and χSB scales shrink at larger B

Speed of sound at finite µ and B

- Jumps at the phase boundaries
- Tends to increase both with μ and B
- Exceeds the conformal value 1/3 generically
- Limits to 1/3 from below at larger T, in agreement with earlier results

Chiral condensate at finite µ

- B facilitates the chiral transition for $\mu < 0.1 \Rightarrow$ inverse catalysis for small μ
- Magnetic catalysis instead at $\mu > 0.1$
- A small region of inverse magnetic catalysis in the phase diagram

Dynamics induced by anisotropy

- Anisotropic QGP produced in off-central collisions due to different pressure gradients
- Does anisotropy act similar to B?
- How to distinguish the effects of anisotropy from B?
- ⇒ consider an anisotropic but neutral plasma

A heuristic discussion

Jarvinen, Nijs, Pedraza, UG '18

Introduce anisotropy through space dependent θ -term: θ =a z

$$Z[A_5, \theta] = \int \mathcal{D}q \, \mathcal{D}A^a e^{-\int L[A^a, q] + A_5 \cdot J^5 + \theta \operatorname{Tr} \star F \wedge F}$$

invariant under
$$A_5 \rightarrow A_5 + d\lambda_5$$
, $\theta \rightarrow \theta - c_a\lambda_5$.

because of the anomaly $d\star J_5 = c_a\, {
m Tr} F\wedge F$.

$$d \star J_5 = c_a \operatorname{Tr} F \wedge F.$$

Rotate θ into the quark propagator:

$$\langle \bar{q}q \rangle_a = \frac{1}{\mathcal{Z}(a)} \int \mathcal{D}A^a_\mu e^{-S_g} \det(\mathcal{D}(a)) \operatorname{Tr}(\mathcal{D}(a))^{-1},$$

$$\mathcal{D}(a) = \gamma^{\mu} \left(\partial_{\mu} + A_{\mu}^{a} T^{a} \right) + \frac{a}{c_{a}} \gamma^{3} \gamma^{5} .$$

Do valence and sea also have opposite effects?

Holographic, anisotropic, non-conformal, neutral plasma

Giataganas, Pedraza, UG '17

Nonconformality \Leftrightarrow a scalar φ , anisotropy \Leftrightarrow another scalar χ

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{-g} \left[R + \mathcal{L}_M \right], \qquad ds^2 = e^{2A(r)} \left[-f(r)dt^2 + d\vec{x}_{\perp}^2 + e^{2h(r)}dx_3^2 + \frac{dr^2}{f(r)} \right],$$

$$\mathcal{L}_M = -\frac{1}{2} (\partial \phi)^2 + V(\phi) - \frac{1}{2} Z(\phi)(\partial \chi)^2, \qquad \phi = \phi(r), \qquad \chi = a \, x_3. \qquad \phi \to j r^{4-\Delta}$$

Holographic, anisotropic, non-conformal, neutral plasma

Giataganas, Pedraza, UG '17 Jarvinen, Nijs, Pedraza, UG '18

Nonconformality ⇔ a scalar φ, anisotropy ⇔ another scalar χ

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{-g} \left[R + \mathcal{L}_M \right], \qquad ds^2 = e^{2A(r)} \left[-f(r)dt^2 + d\vec{x}_{\perp}^2 + e^{2h(r)}dx_3^2 + \frac{dr^2}{f(r)} \right],$$

$$\mathcal{L}_M = -\frac{1}{2} (\partial \phi)^2 + V(\phi) - \frac{1}{2} Z(\phi)(\partial \chi)^2, \qquad \phi = \phi(r), \qquad \chi = a \, x_3. \qquad \phi \to j r^{4-\Delta}$$

Inverse anisotropic catalysis

Conclusions I

- Holography reproduces inverse magnetic catalysis generically
- Supports valence vs. sea competition
 Valence ⇔ explicit dependence in the tachyon equation
 Sea ⇔ implicit dependence through background functions
- Inverse magnetic catalysis only for small μ
- Inverse anisotropic catalysis:
 source of IMC anisotropy rather than charge dynamics caused by B?
- New phases: confined-chiral symmetric, anisotropic confinement

Part II: Chern-Simons diffusion rate

Chern-Simons diffusion rate

Probability per unit time x volume of a CS number changing process:

$$\Gamma_{CS} = \frac{\langle \Delta N_{CS}^2 \rangle}{Vt} = \int d^4x \langle \frac{g^2}{32\pi^2} \operatorname{tr} G \wedge G(x) \frac{g^2}{32\pi^2} \operatorname{tr} G \wedge G(0) \rangle$$

Chern-Simons diffusion rate

Perturbative result:

$$\Gamma_{CS}/T^4 \approx 193\alpha_s^5$$

Moore et al '99

$$\Gamma_{CS}/T^4 = \frac{(g^2N)^2}{256\pi^3} \approx 0.045$$

Son, Starinets '02

Chern-Simons diffusion rate

Perturbative result:

$$\Gamma_{CS}/T^4 \approx 193\alpha_s^5$$

Moore et al '99

$$\Gamma_{CS}/T^4 = \frac{(g^2N)^2}{256\pi^3} \approx 0.045$$

Son, Starinets '02

Improved hQCD:

$$\Gamma_{CS} = \frac{1}{N^2} \frac{sT}{2\pi} Z(\lambda_h)$$

latrakis, Kiritsis, O'Bannon, UG '12

Frequency and momentum dependence

 $\Delta {
m Im}\, G_R(\omega,ec k=0;T_c,2T_c)$

 $\Delta \mathrm{Im} \ G_R(\omega, \vec{k}, T_c, 2T_c)$

latrakis, Kiritsis, O'Bannon, UG '12

Conclusions II

- Improved holographic models predict larger Γ_{CS}
- Nontrivial ω and k depence \Rightarrow spatial modulation of Γ_{CS}

Part III: Spin currents in QGP

Spin-hydrodynamics

Strong vortical structure

 $\omega \sim 10^{22} \, \text{s}^{-1}$

Global spin polarization

Global hyperon polarization at RHIC by spin-orbit coupling $\vec{S} \cdot \vec{J}$

QGP: most vortical fluid: $\omega \sim 10^{22} \text{ s}^{-1}$

STAR collaboration, RHIC '19

Global spin polarization

Global hyperon polarization at RHIC by spin-orbit coupling $\vec{S} \cdot \vec{J}$

QGP: most vortical fluid: $\omega \sim 10^{22} \text{ s}^{-1}$

STAR collaboration, RHIC '19

⇒ hydrodynamic description?

Hydrodynamics with spin current

Gallegos, Yarom, UG '21

Slow variables: energy-momentum and spin current

$$T_{\mu\nu}$$
 $S^{\lambda}_{\mu\nu}$

Earlier work: Becattini et al '08; Becattini, Piccinini '08

Karabali, Nair '14

Florkowski et al '18 '19; Hattori, X.-G. Huang et al '19

Gallegos, UG '19; Li, Stephanov, Yee '20

Hydrodynamics with torsion

• Metric couples to energy-momentum, contorsion sources spin:

$$\omega_{\mu}^{ab} = \mathring{\omega}_{\mu}^{ab} + K_{\mu}^{ab}, \qquad \mathring{\omega} \sim \partial e$$

Hydrodynamics with torsion

• Metric couples to energy-momentum, contorsion sources spin:

$$\omega_{\mu}^{ab} = \mathring{\omega}_{\mu}^{ab} + K_{\mu}^{ab}, \qquad \mathring{\omega} \sim \partial e$$

Hydrodynamics on a manifold with non-trivial torsion:

$$T^{\mu\nu} = \frac{\delta W}{\delta e^a_\mu} e^\nu_a, \qquad S^\lambda_{ab} = \frac{\delta W}{\delta \omega^{ab}_\lambda}$$

Hydrodynamic equations

$$\mathring{\nabla}_{\mu} T^{\mu\nu} = \frac{1}{2} R^{\rho\sigma\nu\lambda} S_{\rho\lambda\sigma} - T_{\rho\sigma} K^{\nu ab} e^{\rho}{}_{a} e^{\sigma}{}_{b} \qquad \text{4 equations}$$

$$\mathring{\nabla}_{\lambda} S^{\lambda}{}_{\mu\nu} = 2 T_{[\mu\nu]} - 2 S^{\lambda}{}_{\rho[\mu} e_{\nu]}{}^{a} e_{\rho}{}^{b} K_{\lambda ab} \,, \qquad \text{6 equations}$$

Hydrodynamic equations

$$\mathring{\nabla}_{\mu} T^{\mu\nu} = \frac{1}{2} R^{\rho\sigma\nu\lambda} S_{\rho\lambda\sigma} - T_{\rho\sigma} K^{\nu ab} e^{\rho}{}_{a} e^{\sigma}{}_{b} \qquad \text{4 equations}$$

$$\mathring{\nabla}_{\lambda} S^{\lambda}{}_{\mu\nu} = 2 T_{[\mu\nu]} - 2 S^{\lambda}{}_{\rho[\mu} e_{\nu]}{}^{a} e_{\rho}{}^{b} K_{\lambda ab} \,, \qquad \text{6 equations}$$

10 dynamical variables:

$$T \qquad u^{\mu} \qquad \mu^{ab} = \omega^{ab}_{\mu} u^{\mu}$$

Spin "chemical" potential

Analogous to electric potential

$$\mu_E = A_\mu u^\mu$$

Conformal spin hydro

Equations of motion + constitutive relations: determine T, u and $\mu^{\alpha\beta}$

$$\mu^{ab} = 2u^{[a}m^{b]} + \epsilon^{abcd}u_c\tilde{M}_d$$
 "electric" "magnetic"

$$u^{\alpha} \mathcal{D}_{\alpha} T = \hat{\eta} \sigma_{\alpha\beta} \sigma^{\alpha\beta} ,$$

$$\Delta^{\nu}_{\beta} \mathcal{D}_{\alpha} \sigma^{\alpha\beta} = \left(\frac{\Delta^{\nu\beta}}{3\hat{\eta}} - \frac{3\sigma^{\nu\beta}}{T}\right) \mathcal{D}_{\beta} T,$$

$$\Delta_{\beta}^{\lambda} u^{\alpha} \mathcal{D}_{\alpha} m^{\beta} = c_1 \Delta_{\beta}^{\lambda} \mathcal{D}_{\alpha} \sigma^{\alpha\beta} + c_2 \Delta_{\beta}^{\lambda} \mathcal{D}_{\alpha} M^{\alpha\beta} + c_4 \sigma^{\lambda\alpha} m_{\alpha} + c_7 M^{\lambda\alpha} m_{\alpha} + c_8 \Omega^{\lambda\alpha} m_{\alpha} ,$$

$$\Delta_{\alpha}^{\rho} \Delta_{\beta}^{\sigma} u^{\lambda} \mathcal{D}_{\lambda} M^{\alpha\beta} = -\hat{\sigma} \Delta_{\alpha}^{\rho} \Delta_{\beta}^{\sigma} u^{\lambda} \mathcal{D}_{\lambda} \Omega^{\alpha\beta} + c_{3} \Delta^{\alpha[\rho} \Delta^{\sigma]\beta} \mathcal{D}_{\alpha} m_{\beta} + c_{5} \sigma^{\alpha[\rho} M^{\sigma]}_{\alpha} + c_{6} \sigma^{\alpha[\rho} \Omega^{\sigma]}_{\alpha} + c_{9} M^{\alpha[\rho} \Omega^{\sigma]}_{\alpha}$$

Need: initial conditions + transport coefficients

Application to HIC

Polarization of hyperon:

$$\Pi_{\mu}(p) = -\frac{1}{4} \epsilon_{\mu\rho\sigma\beta} \frac{p^{\beta}}{m} \underbrace{\int d\Sigma_{\lambda} p^{\lambda} B(x,p) \mu^{\rho\sigma}}_{\text{m. ... } 2 \int d\Sigma_{\lambda} p^{\lambda} n_{F} \cdot \cdot \cdot \cdot}_{\text{bottom}} \text{Boltzmann type}$$
freezout surface distribution

Application to HIC

Polarization of hyperon:

$$\Pi_{\mu}(p) = -\frac{1}{4} \epsilon_{\mu\rho\sigma\beta} \frac{p^{\beta}}{m} \underbrace{\int d\Sigma_{\lambda} p^{\lambda} B(x,p) \mu^{\rho\sigma}}_{\text{m.}} \cdots \text{$pin potential}$$

$$\text{$freezout surface}$$

Spin hydrodynamics ⇒ spin potential

Comparison to data

Hydrodynamic solution, for small "kinematic viscosity"/time

$$\frac{3\eta_0}{4\epsilon_0} \frac{1}{T\tau} \ll 1$$

Floerschinger, Wiedemann '11

$$\delta m^x(\tau) \propto \tau^{-\frac{8}{3}} e^{-\frac{9q^2\eta_0\tau_0}{16T_0\epsilon_0} \left(\frac{\tau}{\tau_0}\right)^{\frac{4}{3}}}, \qquad \delta M^{x\eta}(\tau) \propto q^2 \tau^{-\frac{5}{3}} e^{-\frac{9q^2\eta_0\tau_0}{16T_0\epsilon_0} \left(\frac{\tau}{\tau_0}\right)^{\frac{4}{3}}}$$

Conclusions III

- Spin-hydrodynamics: a novel theory of relativistic hydro Gallegos, Yarom, UG '22
- Belinfante-Rosenfeld ambiguity fixed by torsion
- Reproduces observed global polarization of hyperons

Outlook

Outlook

EoS, transport coefficients

Chiral condensate at finite µ

- µ decreases the condensate at fixed B
- B generically increases the condensate, except around T_{χ} and for $\mu < 0.1$
- No T dependence in the confined phase, due to 1/N² suppression

Thermodynamics of the anisotropic theory

- T_c decreases with anisotropy
- A new plasma phase and two phase boundaries
- **⇒** inverse anisotropic catalysis?

Holographic, anisotropic, non-conformal, neutral plasma

Giataganas, Pedraza, UG '17

Nonconformality ⇔ a scalar φ, anisotropy ⇔ another scalar χ

$$S = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left[R + \mathcal{L}_M \right],$$

$$\mathcal{L}_M = -\frac{1}{2} (\partial \phi)^2 + V(\phi) - \frac{1}{2} Z(\phi) (\partial \chi)^2,$$

$$V(\phi) = 12 \cosh(\sigma \phi) + b \phi^2, \qquad Z(\phi) = e^{2\gamma \phi},$$

$$ds^{2} = e^{2A(r)} \left[-f(r)dt^{2} + d\vec{x}_{\perp}^{2} + e^{2h(r)}dx_{3}^{2} + \frac{dr^{2}}{f(r)} \right],$$

$$\phi = \phi(r), \qquad \chi = a x_{3}. \qquad \phi \to jr^{4-\Delta}$$

IR geometry is hyper scaling violating:

$$ds^{2} = \tilde{L}^{2}(ar)^{2\theta/3z} \left[\frac{-dt^{2} + d\vec{x}_{\perp}^{2} + dr^{2}}{a^{2}r^{2}} + \frac{c_{1} dx_{3}^{2}}{(ar)^{2/z}} \right], \qquad ds \rightarrow \lambda^{\theta/3z} ds.$$

$$\phi = c_{2} \log(ar) + \phi_{0}. \qquad t \rightarrow \lambda t, \quad \vec{x}_{\perp} \rightarrow \lambda \vec{x}_{\perp}, \quad r \rightarrow \lambda r, \quad x_{3} \rightarrow \lambda^{\frac{1}{z}} x_{3} + \frac{c_{1} dx_{3}^{2}}{(ar)^{2/z}} \right].$$

Thermodynamics

Jarvinen, Nijs, Pedraza, UG '18

- F ~ -T⁴ at large T; F ~ -T³ at small T
- Very different than a=0 case
- Black hole is "confining"

First order phase transition Second order phase transition

Crossover

- T_X decreases with a generically
- Possibility of anisotropic confinement
- Quantum critical point for x=1/3
- Possibility of a confined chirally symmetric phase!?

Magnetic QCD

Anisotropy

B reduces original Lorentz : $SO(3,1) \Longrightarrow SO(1,1) \times SO(2)$ boost // B rotation \(\subseteq \text{B} \)

propagators, transport coefficients decomposed using projectors

$$\Delta_{\mu\nu} = \eta_{\mu\nu} + u_{\mu}u_{\nu} - \frac{B_{\mu}B_{\nu}}{B^2} \qquad \text{etc.}$$

Anisotropic confinement: $\sigma_{\perp} > \sigma_{\parallel}$

$$\sigma_{\perp} > \sigma_{\parallel}$$

Bonati, D'Elia et al. '14

Chiral symmetry breaking

B reduces original chiral symmetry: u +2/3, d -1/3:

$$SU(N_u)_L \times SU(N_u)_R \times SU(N_d)_L \times SU(N_d)_L \times U(1)_{A-} \Longrightarrow SU(N_u)_V \times SU(N_d)_V$$

IR effective theory: χPT of $N_u^2 + N_d^2 - 1$ NG bosons

Magnetic QCD

Fundamental scales at vanishing temperature and density

$$1/\sqrt{eB}$$
 Magnetic screening length

$$\Lambda_{QCD}(B)$$
 Confinement scale

$$m_{dyn}(B)$$
 Dynamically generated quark mass

Separation of scales:

$$m_{dyn} \ll k \ll \sqrt{eB}$$
 $k \ll m_{dyn}$

χSB

confinement

Additional scales T, µ

$$T \neq 0, \ \mu = 0$$

$$T \neq 0, \ \mu \neq 0$$

Holographic models

Various regimes

L
$$eB\gg \Lambda_{QCD}^2$$

I.
$$eB\gg \Lambda_{QCD}^2$$
 Perturbative QCD $\dfrac{1}{lpha_s}pprox b\,\log\dfrac{|eB|}{\Lambda_{QCD}^2}$ Kabat, Lee, Weingerg '02

II.
$$eB \approx \Lambda_{QCL}^2$$

II. $eB pprox \Lambda_{QCD}^2$ Lattice QCD, NJL effective theory, holography

$$\parallel \parallel eB \ll \Lambda_{QCD}^2$$

Perturbative EM

QCD in strong B (regime I)

Landau quantization

$$E_n(k_z) = \pm \sqrt{m^2 + 2|eB|n + k_z^2}$$

Dynamics effectively reduce 3+1 -> 1+1

Degeneracy of states ~ |eB|

Magnetic screening

Gluon polarisation at |k|2<< |eB| dominated by quarks at LLo over gluons and ghosts

$$\sim$$

$$M_g^2 \approx (2N_u + N_d) \frac{\alpha_s}{3\pi} |eB|$$

Color charge effectively screened in the regime

$$m_{dyn} \ll k \ll \sqrt{eB}$$

Magnetic catalysis in strong B

Three energy regimes

Relevant for magnetic catalysis

- Regimes relevant for χSB and confinement are separate at finite B!
- Solve the gap equation (improved rainbow approx) to obtain $\,{
 m m_{dyn}}$ at $\,eB\gg\Lambda_{QCD}^2$

Dynamically generated quark mass: Mire

Miransky, Shovkovy '15

Magnetic catalysis in strong B

Dynamically generated quark mass for $~eB\gg \Lambda_{QCD}^2$

$$m_{dyn}^2 \approx 2|e_q B|(\bar{\alpha}_s)^{\frac{2}{3}} \exp\left[\frac{4N_c \pi}{\alpha_s (N_c^2 - 1)\log(\bar{\alpha}_s)}\right]$$

with
$$\bar{\alpha}_s = \alpha_s \frac{2N_u + N_d}{6\pi} \left| \frac{e}{e_q} \right|$$
 and $\frac{1}{\alpha_s} \approx \frac{11N_c - 2N_f}{12\pi} \log \frac{eB}{\Lambda_{QCD}^2}$

Remark I: Typically magnetic catalysis $m_{dyn} \propto eB$

But pQCD with resummation may exhibit inverse behaviour

Remark II: 't Hooft limit is trivial, need to take Veneziano limit:

$$N_c, N_f \to \infty, \qquad x = \frac{N_f}{N_c} = \text{const.}$$

Connection to Polyakov loop

• Testing the valence vs. sea idea: Bruckmann, Endrodi, Kovacs '13

$$\bar{\psi}\psi^{\text{val}}(B) = \frac{1}{\mathcal{Z}(0)} \int \mathcal{D}U \, e^{-S_g} \det(\mathcal{D}(0) + m) \operatorname{Tr}(\mathcal{D}(B) + m)^{-1},$$
$$\bar{\psi}\psi^{\text{sea}}(B) = \frac{1}{\mathcal{Z}(B)} \int \mathcal{D}U \, e^{-S_g} \det(\mathcal{D}(B) + m) \operatorname{Tr}(\mathcal{D}(0) + m)^{-1}.$$

Finite density

Jarvinen, Nijs, UG'17

- · New phases?
- Magnetic catalysis at finite density?
- Urgent call: upcoming RHIC isobar, FAIR, NICA experiments
- Lattice suffers from the sign problem

Inverse anisotropic catalysis

Jarvinen, Nijs, Pedraza, UG '18

Improved holographic QCD in the Veneziano limit with anisotropy Same as before, with μ =0, B=0 but θ =a z with

$$Z(\phi) = 1 + e^{4\phi}/10$$

IR geometry is "rolling" AdS₄ x R: assuming broken chiral symmetry

Hydrodynamics in HEP??

One of the most universal theories in physics

Large (cosmic backgrounds, 10^9 ly) to small (quark gluon plasma $\sim 10^{-14}$ m) Cold (Fermi gas, 10^{-8} K) to hot (quark gluon plasma $\sim 10^{12}$ K)

QGP is an almost ideal, highly magnetised fluid

Theory of slow variables

- Decompose $\varphi = \varphi_{UV} + \varphi_{IR}$, integrate out $\varphi_{UV} \Longrightarrow$ Effective theory for φ_{IR}
- Local field theory W[ϕ_{IR}] for $l_{mfp} \times \partial \phi_{IR} = l_{mfp} \times L \ll 1$
- At thermal equilibrium, generic ϕ_{IR} decoheres in τ_{relax}

except conserved quantities: charge, energy, momentum...

