
Quantum Gravity of Open System

A New Genuine Multipartite 
Entanglement Measure: 
from Qubits to Multiboundary Wormholes

Junggi Yoon
APCTP

February 4, 2025



A New Genuine Multipartite Entanglement Measure: 
from Qubits to Multiboundary Wormholes

Vinay Malvimat 
(APCTP)

Jaydeep Kumar Basak 
(National Sun Yat-Sen University) 

➙ (GIST) Soon

Today: 2411.11961



A New Genuine Multipartite Entanglement Measure: 
from Qubits to Multiboundary Wormholes

|ψ⟩ =
1

16
( |0000000⟩ + |0001011⟩ + |0011001⟩ + |0110010⟩ + |0110100⟩)

+
1

16
( |1000110⟩ + |1010011⟩ + |1100001⟩ + |1101010⟩ + |1111111⟩)

−
1

16
( |0011110⟩ + |0100111⟩ + |0101101⟩ + |1001100⟩ + |1010101⟩ + |1111000⟩)



|Bell⟩ =
1

2
( |00⟩ + |11⟩)

Why So Speicial?



|Bell⟩ =
1

2
( |00⟩ + |11⟩)

A B
Trace out B

A

 maximally mixed stateρA = TrB(ρ)

MAXimally mixed state saturates the entanglement entropy.

SA = − Tr(ρA log ρA)

Good Measure  
for bi-partite Entanglement



How about Multi-partite Entanglement?



|GHZ⟩ =
1

2
( |000⟩ + |111⟩) |W⟩ =

1

3
( |100⟩ + |010⟩ + |001⟩)

Which state is more “special”?

VS

or, something else?



We need new MEASURE for  
Multi-partite Entanglement!!

Measure for Bi-partite Entanglment 

Maximally Entangled State 

Measure for Multi-partite 
Entanglment

Maximally Multi-Entangled State

SA = − Tr(ρA log ρA)

|Ψ⟩ =
1

d ∑
n

|n⟩ ⊗ |n⟩



We propose new MEASURE for  
Multi-partite Entanglement.

ℓAB ≡ 2 min[S(A), S(B)] − SR(A : B)

“L-Entropy” of 
subsystem A and B



[Dutta, Faulkner, 2019]
Reflected Entropy

SR(A : B) = S(AA*) = S(BB*)

A B A B

A* B*

A

A*

Canonical Purification

Reduced density matrix for AA*

Mixed state ρAB | ρAB⟩Pure state

Trace out B and B*

Reflected Entropy



New Measure for Multi-partite Entanglement
Averaged L-Entropy

ℓAB ≡ 2 min[S(A), S(B)] − SR(A : B) ≧ 0

2 min[S(A), S(B)] ≧ SR(A : B) ≧ I(A : B)

A1 A2 ⋯ An

n-partite system

ℓav ≡ ∏
i<j

[ℓAiAj]
2

n(n − 1)Averaged “L-Entropy”

✴ The bound for the reflected entropy



Genuine Multipartite Entanglement Measure  (GME)ℰ
Criteria for Multipartite Entanglement

I.  for fully-seperable or bi-seperable state 

II.  for non-biseperable state 

III. : invariant under Local Unitary operation. 

IV. : Non-increasing under LOCC [Entanglement Monotone] 

V.

ℰ = 0

ℰ > 0

ℰ

ℰ

ℰ(GHZ) > ℰ(W)

[Ma, Chen, Chen, Spengler, Gabriel, and Huber, 2011] [Xie, Eberly, 2021]

|000⟩ |Bell⟩ ⊗ |0⟩

Local Operations and Classical Communication
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II.  for non-biseperable state 
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ℰ > 0

ℰ

ℰ
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|000⟩ |Bell⟩ ⊗ |0⟩

Local Operations and Classical Communication

Our averaged L-entropy satisfies this criteria.



The Bound of L-entropy
Maximally Multi-entangled State

|ψ⟩GGHZ =
1

d

d

∑
j=1

| jA jB jC⟩ℓav ≦ ℓGHZ = log[d] < 2 log[d]

✴ In general , the L-entropy is bounded by 2 log[d]

A1 A2 ⋯ An

n-partite system

d1 = d2 = ⋯ = dn = d

ℓav ≤ 2 log[d]

✴ Depending on  and , the bound is not saturated.n d

For tri-partite system ( ), the averaged L-entropy is bounded by  

which is the averaged L-entropy of (generalized) GHZ state 

n = 3 log[d]



Which states saturate  
the bound of L-entropy?

ℓav ≤ 2 log[d]



✴ In n-partite system, k-uniform state can exists only if

Saturates the bound of the L-entropy
k-Uniform State

ρA1A2⋯Ak
=

1
dk

𝕀A1⋯Ak
=

1
dk

𝕀A1
⊗ ⋯ ⊗ 𝕀Ak

k ≦ ⌊
n
2

⌋

✴ -uniform state: In -partite system, the reduced density matrix of any  numbers of   

                                   subsystems is maximally mixed.

k n k

A1 A2 ⋯ An

n-partite system

: Factorized

[necessary condition]

ℓav(k-uniform) = 2 log[d]

✴ -uniform state has maximum L-entropy   ( )k 2 log[d] k ≧ 2

Ex) There is no k-uniform state ( ) in tri-partite system ( )k ≧ 2 n = 3

ℓav ≦ ℓGHZ = log[d] < 2 log[d]



L-entropy can capture 2-uniform state
2-Uniform State

k-uniform 
state

2-uniform 
state

Maximal L-entropy 
state 

( )ℓav = 2 log[d]



L-entropy enables the optimization
Optimization for 2-uniform State

|ψ0⟩ − |ϵ⟩

✴ L-entropy is a concrete measure for the multi-partite entanglement entropy. 

✴ One can optimize the L-entropy to obtain (approximated) 2-uniform state.

random state (perturbation)

8 partie d=2

Compare L-entropy of the following states

|ψ0⟩ |ψ0⟩ + |ϵ⟩

Algorithm

Choose a random state |ψ0⟩

Choose the largest L-entropy state to define |ψ1⟩

L-entropy: 0.999447

approximated 2-uniform state



L-entropy enables the optimization
Optimization for 2-uniform State

✴ Sometimes, we can get the exact 2-uniform states from the optimization.

4 parties d=6

✴ The optimization does not always work.

|ψ⟩ =
1

8
( |00000⟩ + |01100⟩ + |10001⟩ + |11101⟩ − |00111⟩ − |01011⟩ − |11010⟩ − |11101⟩)

|ψ⟩ =
1

8
( |000100⟩ + |011000⟩ + |011111⟩ + |101110⟩ + |110010⟩ − |000011⟩ − |101001⟩ − |110101⟩)

|ψ⟩ =
1

8
( |0000011⟩ + |0010100⟩ + |0101110⟩ + |0111001⟩ + |1001101⟩ + |1011010⟩ + |1100000⟩ + |1110111⟩)

|ψ⟩ =
1

9
( |0121⟩ + |0202⟩ + |1022⟩ + |1100⟩ + |2001⟩ + |2112⟩ − |0010⟩ − |1211⟩ − |2220⟩)

k ≦ ⌊
n
2

⌋ [necessary condition for k-uniform state]

The case of 4-partite 2-uniform state ( , )  is unclear.k = 2 n = 4

✓ : does not exist  

✓ : exist  

✓ : open question

d = 2
d = 3,4,5
d = 6

0.882374



The 2-uniform state is  
maximally multi-entangled 

with respect to averaged L-entropy.



Page Curve

A B

S(A) = log(nA) −
nA

2nB

nA

S(A)

A typical state (random state) is 
maximally (bi-partite) entangled



Is a typical state  
maximally multi-entangled?

Mostly, Yes.  
But not always.



✴ Reflected Entropy of random state

Estimate the reflected entropy by resolvent technique
n-partite Random State (  )n ≧ 5

SR(A : B) =
d2 + 4d2 log(d) − 2d2 log ( d2

4dAB )
8dAB

+ O ( 1
d2

AB )

SA ≈ log[dA] −
dA

2dA

A B AB

n parties

n-partite system

[Akers, Faulkner, Lin and Rath, 2021]

cf. Entanglement entropy of random state [Page, 1993]



Estimate the reflected entropy by resolvent technique
n-partite Random State (  )n ≧ 5

A B AB

n parties

n-partite system

ℓAB ≡ 2 min[S(A), S(B)] − SR(A : B)

= 2 log[d]−
8 + d2 + 4d2 log(d) − 2d2 log( d2

4dAB
)

8dAB

+O ( 1
d2

AB )

dA = dB = 6 , dAB = dC



It is NOT 2-uniform state
3-partite Random State

ℓAB =
1
2

+
2 log[d] − 5

2d
+ O(

1
d2

)

I(A : B) = S(A) + S(B) − S(AB) ≈ log[d] ≠ 0

A B C

3-partite system

✴ Mutual Information = S(C)

dA = dB = dC = d

∵ Total system ABC is pure

The subsystem A and B cannot be factorized.

✴ L-entorpy is smaller than the L-entropy of GHZ state

: The leading contribution is independent of d

≪ log[d] : L-entropy of GHZ state



NOT 2-uniform state
4-partite Random State

A B C D

4-partite system

✴ L-entropy of 4-partite random state by resolvent technique

ℓAB = (2x0 log[d]) + y0 + O(
1
d2

)

x0 ≈ 0.720
y0 ≈ − 0.453

2 log[d]

(2x0 log[d]) + y0 + O(
1
d2

)
: smaller than Maximum value



|TFD(β)⟩ =
1

Z ∑
n

e− β
2 En |En⟩ ⊗ |En⟩

Thermofield Double(TFD) State 
(Canonical Purification of Thermal State)

Black Hole in Gravity

What is Finite Temperature version  
of  Multi-entangled State?

|Ψ⟩ =
1

d ∑
n

|En⟩ ⊗ |En⟩

Maximally Mixed State

Introduce Temperature



Pure state reproducing Thermal Expectation Value
Thermal Pure Quantum (TPQ) State

|Ψ⟩ ≡ e− β
2 H |ψ⟩

✴ In a given Hilbert space , we choose a random state .  

Then, we define the TPQ state   by

ℋ |ψ⟩
|Ψβ⟩

⟨Ψβ |𝒪 |Ψβ⟩

⟨Ψβ |Ψβ⟩
=

1
Z(β)

Tr(𝒪 e−βH)

✴ The random average of the expectation value with respect to the TPQ state yields the 
thermal expectation value.

[ Sugiura and Shimizu, 2013]



⟨Ψβ |𝒪 |Ψβ⟩

⟨Ψβ |Ψβ⟩
=

1
Z(β)

Tr(𝒪 e−βH)

This result looks nice.

One might think it is similar to TFD state.

⟨TFD(β) |𝒪 |TFD(β)⟩ =
1

Z(β)
Tr(𝒪 e−βH)

But, it is different.

|Ψβ⟩ ∈ ℋ |TFD(β)⟩ ∈ ℋ ⊗ ℋVS
: purification of thermal state: Not purification of thermal state

TPQ state



Then, why not consider  
the random state  

in enlarged Hilbert space?



TPQ-like State in Enlarged Hilbert Space

✴ For n-partite system, consider a random state in the n copy of Hilbert space:

|ψ⟩ ∈ ℋ ⊗ ⋯ ⊗ ℋ
n

|Ψα⟩ ≡
n

∏
i=1

e− β
2 H(k) |ψ⟩ ∈ ℋ ⊗ ⋯ ⊗ ℋ

n

Define TPQ-like state: 

⟨Ψβ |𝒪j |Ψβ⟩

⟨Ψβ |Ψβ⟩
=

1
Z(β)

Tr(𝒪j e−βH)

✴ Then, the random average of the expectation value still reproduce the thermal one!

when  acts only on  jth Hilbert space.𝒪j



Microstate of Black Hole or Multi-boundary Wormhole?
Holographic Dual of TPQ-like State

|Ψα⟩ ≡
n

∏
i=1

e− α
2 H(k) |ψ⟩ ?



TPQ-like State still looks problematic
Factorization Problem

⟨Ψβ |𝒪1𝒪2 |Ψβ⟩

⟨Ψβ |Ψβ⟩
=

1
Z(β)

Tr(𝒪1𝒪2 e−βH)

𝒪1
𝒪2

𝒪1

𝒪2



TPQ-like State still looks problematic
Factorization Problem

⟨Ψβ |𝒪1𝒪2 |Ψβ⟩

⟨Ψβ |Ψβ⟩
=

1
[Z(β)]2

Tr(𝒪1 e−βH)Tr(𝒪2 e−βH)

𝒪1

𝒪2

𝒪1 𝒪2



TPQ-like State still looks problematic
Factorization Problem

⟨Ψβ |𝒪1𝒪2 |Ψβ⟩

⟨Ψβ |Ψβ⟩
=

1
[Z(β)]2

Tr(𝒪1 e−βH)Tr(𝒪2 e−βH)
: Factorized!!

This should not be factorized.

𝒪1 𝒪2

𝒪1

𝒪2



This should not be factorized.

𝒪1 𝒪2 VS
⟨Ψβ |𝒪1𝒪2 |Ψβ⟩

⟨Ψβ |Ψβ⟩
=
Tr(𝒪1 e−βH)Tr(𝒪2 e−βH)

[Z(β)]2

Factorized!!

Is it Contradiction? 
Or, is TPQ-like state not holographic 

dual to black hole?



This should not be factorized.

𝒪1 𝒪2 VS
⟨Ψβ |𝒪1𝒪2 |Ψβ⟩

⟨Ψβ |Ψβ⟩
=
Tr(𝒪1 e−βH)Tr(𝒪2 e−βH)

[Z(β)]2

Factorized!!

Assumption:  
Operator is state-independent

Operator is state-dependent  
in the black hole



This should not be factorized.

𝒪1 𝒪2 VS
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⟨Ψβ |Ψβ⟩
=
Tr(𝒪1 e−βH)Tr(𝒪2 e−βH)

[Z(β)]2
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Operator is state-dependent  
in the black hole



Definition
Multi-partite Thermal Pure Quantum State

✴ Reference Hamiltonian  and its eigenstates  H { |Ej⟩}
H |Ej⟩ = Ej |Ej⟩



Definition
Multi-partite Thermal Pure Quantum State

✴ Reference Hamiltonian  and its eigenstates  H { |Ej⟩}

✴ Schmidt decomposition of n-partite random state  for each k-th party.|ψ⟩

H |Ej⟩ = Ej |Ej⟩

|ψ⟩ ≈
1

d ∑
j

|σ(k)
j ⟩{k} ⊗ |ω(k)

j ⟩{1,2,⋯,n}/{k}

rest of themk-th partyrandom state is 1-uniform state
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|ψ⟩ ≈
1

d ∑
j

|σ(k)
j ⟩{k} ⊗ |ω(k)
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rest of themk-th partyrandom state is 1-uniform state

U(k) ≡ ∑
j

|Ej⟩⟨σ(k)
j |
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✴ Define a unitary matrix  mapping  to U(k) |σ(k)
j ⟩ |Ej⟩



Definition
Multi-partite Thermal Pure Quantum State

✴ Reference Hamiltonian  and its eigenstates  H { |Ej⟩}

✴ Schmidt decomposition of n-partite random state  for each k-th party.|ψ⟩

H |Ej⟩ = Ej |Ej⟩

|ψ⟩ ≈
1

d ∑
j

|σ(k)
j ⟩{k} ⊗ |ω(k)

j ⟩{1,2,⋯,n}/{k}

rest of themk-th partyrandom state is 1-uniform state

U(k) ≡ ∑
j

|Ej⟩⟨σ(k)
j |

|σ(k)
j ⟩ |Ej⟩

✴ Define a unitary matrix  mapping  to U(k) |σ(k)
j ⟩ |Ej⟩

✴ Define the Hamiltonian  of the k-th partyH(k)

H(k) ≡ U(k)†HU(k) H(k) |σ(k)
j ⟩ = Ej |σ(k)

j ⟩ is the eigenstate of  |σ(k)
j ⟩ H(k)



Effective Temperature
Multi-partite Thermal Pure Quantum State

✴ Define multi-partite Thermal Pure Quantum (MTPQ) state:

|Ψα⟩ ≡
n

∏
i=1

e− α
2 H(k) |ψ⟩ : the parameter  is related to the inverse temperature .α = α(β) β



Effective Temperature
Multi-partite Thermal Pure Quantum State

✴ Define multi-partite Thermal Pure Quantum (MTPQ) state:

|Ψα⟩ ≡
n

∏
i=1

e− α
2 H(k) |ψ⟩

✴ We compare the reduced density matrix with the thermal density matrix.

: the parameter  is related to the inverse temperature .α = α(β) β

ρ = |Ψα⟩⟨Ψα |

ρ(k) ≡ tr{1,2,⋯,n}/{k}ρ = ∑
j

|ζ(k)
j ⟩λ(k)

j ⟨ζ(k)
j |

(diagonalization of) reduced density matrix

ρ(k)
 thermal

(β) ≡ |ζ(k)
j ⟩

e−βEj

Z(β)
⟨ζ(k)

j |

thermal density matrix

same state
energy eigenvalue of reference Hamiltonian



Effective Temperature
Multi-partite Thermal Pure Quantum State

✴ Define multi-partite Thermal Pure Quantum (MTPQ) state:

|Ψα⟩ ≡
n

∏
i=1

e− α
2 H(k) |ψ⟩

✴ We compare the reduced density matrix with the thermal density matrix.

: the parameter  is related to the inverse temperature .α = α(β) β

ρ = |Ψα⟩⟨Ψα |

ρ(k) ≡ tr{1,2,⋯,n}/{k}ρ = ∑
j

|ζ(k)
j ⟩λ(k)

j ⟨ζ(k)
j |

(diagonalization of) reduced density matrix

ρ(k)
 thermal

(β) ≡ |ζ(k)
j ⟩

e−βEj

Z(β)
⟨ζ(k)

j |

thermal density matrix

same state
energy eigenvalue of reference Hamiltonian

S(ρ(k) | |ρ(k)
 thermal

(β)) = tr(ρ(k) log ρ(k)) − tr(ρ(k) log ρ(k)
 thermal

(β))

✴ For the given , we determine the effective inverse temperature  by minimizing the 

relative entropy between the reduced density matrix and the thermal density matrix.

α β



Spectrum from Reduced Density Matrix
Multi-partite Thermal Pure Quantum State

✴ After determining the effective (inverse) temperature, one can extract the spectrum  from 

the reduced density matrix

{ Ẽ j}

✴ Comparison the spectrum  from  and the spectrum  of the reference 

Hamiltonian 

{ Ẽ j} ρ(k) {Ej}

ρ(k) = ∑
j

|ζ(k)
j ⟩

e−βk Ẽ j

Z̃(βk)
⟨ζ(k)

j |

5-party of N=6 SYK model 4-party of N=8 SYK model



State-dependence
Multi-partite Thermal Pure Quantum State

✴ Define a unitary matrix  mapping  to .W(k) |ζ(k)
j ⟩ |Ej⟩

W (k) ≡ ∑
j

|Ej⟩⟨ζ(k)
j |

ρ(k) = ∑
j

|ζ(k)
j ⟩

e−βk Ẽ j

Z̃(βk)
⟨ζ(k)

j |

|ζ(k)
j ⟩ |Ej⟩

reduced density matrix



State-dependence
Multi-partite Thermal Pure Quantum State

✴ Define a unitary matrix  mapping  to .W(k) |ζ(k)
j ⟩ |Ej⟩

✴ For an operator  in the reference system, we define a state-dependent operator  in 

the k-th party.

𝒪 𝒪(k)

W (k) ≡ ∑
j

|Ej⟩⟨ζ(k)
j |

ρ(k) = ∑
j

|ζ(k)
j ⟩

e−βk Ẽ j

Z̃(βk)
⟨ζ(k)

j |

|ζ(k)
j ⟩ |Ej⟩

𝒪(k) ≡ W(k)†𝒪W(k)

reduced density matrix



State-dependence
Multi-partite Thermal Pure Quantum State

✴ Define a unitary matrix  mapping  to .W(k) |ζ(k)
j ⟩ |Ej⟩

✴ For an operator  in the reference system, we define a state-dependent operator  in 

the k-th party.

𝒪 𝒪(k)

W (k) ≡ ∑
j

|Ej⟩⟨ζ(k)
j |

ρ(k) = ∑
j

|ζ(k)
j ⟩

e−βk Ẽ j

Z̃(βk)
⟨ζ(k)

j |

|ζ(k)
j ⟩ |Ej⟩

𝒪(k) ≡ W(k)†𝒪W(k)

⟨Ψα |𝒪(k) |Ψα⟩ =
1

Z̃(βk) ∑
j

⟨Ej |𝒪 |Ej⟩

✴ Then, one can show that the expectation value of  with respect to the MTPQ state becomes 

the thermal expectation value of the corresponding operator  in the reference system.

𝒪(k)

𝒪

: (at least) “thermal 1-uniform state”

reduced density matrix



Bi-partite Random State
Example of MTPQ State

✴ The Schmidt decomposition of bi-partite random state

✴ Define (state-dependent) unitary operator and the Hamiltonian for each party.

|ψ⟩ ≈
1

d ∑
j

|σ(1)
j ⟩ |σ(2)

j ⟩

U(k) ≡ ∑
j

|Ej⟩⟨σ(k)
j | H(k) = U(k)†HU(k)

|Ψα⟩ = e− α
2 (H(1)+H(2)) |ψ⟩ ≈

1

d ∑
j

e−αEj |σ(1)
j ⟩ |σ(2)

j ⟩

|Ψβ
2
⟩ ≈

Z(β)

d
|TFD(β)⟩

(k = 1,2)

✴ Construction of MTPQ state:

✴ The effective (inverse) temperature is easy to determined by β = 2α



Bi-partite Random State
Example of MTPQ State

✴ The expectation value of  and  with respect to MTPQ state (with proper 

normalization) gives the thermal expectation value of them.

𝒪R 𝒪L

✴ The expectation value of  with respect to MTPQ state also reproduces the 

expected thermal expectation value.

𝒪R𝒪L

𝒪R = U(2)†𝒪U(2)

𝒪L = U(1)†𝒪U(1)

⟨Ψβ
2
|𝒪R |Ψβ

2
⟩ =

1
Z ∑

j

e−βEj⟨Ej |𝒪 |Ej⟩

⟨Ψβ
2
|𝒪L

1𝒪R
2 |Ψβ

2
⟩ =

1
Z ∑

j,k

e− β
2 (Ej+Ek)⟨Ej |𝒪1 |Ek⟩⟨Ej |𝒪2 |Ek⟩

✴ For a given operator  in the reference system, we define state-dependent operator𝒪

𝒪L 𝒪R

: thermal 1-uniform state



5-party 3 qubit SYK Model (N=6)
Example of MTPQ State

EE of one party vs thermal entropy parameter  vs effective (inverse) temperatureα

relative entropy between reduced density matrix 
and thermal density matrix L-entropy vs 2 min(S(1)

th , S(2)
th )



Further Confirmations of Holographic Dual wormhole of MTPQ State
Future Works

𝒪1 𝒪2

𝒪1

𝒪2



Thank You


