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Introduction

. In the M/F-theory geometric engineering, Abelian gauge symmetries
emanate from reduction of C3 along harmonic, normalizable 2-forms.

C3 ∼ Aµdxµ ∧ ω

. The 2-form ω can be described via its Poincaré dual cycle (divisor).

. In F-theory, the elliptically fibered CY has extra sections, which are
identified as new divisor classes giving rise to U(1)s. [Morrison,Vafa]

Techniques expanded and refined over the past few years.

[Grimm,Weigand; Morrison,Park; (Borchmann),Mayrhofer,Palti,Weigand;

Cvetic,(Grassi),Klevers,Piragua,(Song),(Taylor); V.Braun,Grimm,Keitel; Braun,Collinucci,RV]

. In this talk, new way of detecting such divisors in varieties that admit
small resolutions. We will focus on CY three-fold.
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Introduction
Simplest way to get a massless U(1) in F-theory is ‘U(1) restriction’:
[Grimm,Weigand]

(y − a3)(y + a3) = x(x2 + b2x + 2b4)

I elliptic fibration has one conifold singularity at x = y = a3 = b4 = 0;

I small resolution: exceptional P1 intersects extra divisor Dω at one point.

P1

Dω

M2 couples to the 3-form:∫
M2

C3 =

∫
Aµdxµ

∫
P1

ω = (P1 · Dω)

∫
Aµdxµ
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Introduction

‘U(1) restriction’ is so far also the only (compact) case where Matrix
Factorization (MF) has been applied in F-theory. [Collinucci,Savelli]

This formalism allows to deal with singular manifolds without resolution.

. In particular, a ‘line bundle’ M on CY arises naturally.
c1(M) ∼ ω related to the U(1) divisor.

. Identify massless matter charged under this U(1).

Moreover, MF comes naturally with (NCC)Resolution and associated quiver.
[Aspinwall,Morrison], [Andres’ talk]

Apply this formalism to more generic setups with abelian gauge symmetries
and matter with different charges. This approach can give new insights.
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Conifold
In U(1) restriction, Weierstrass model factorizes as

(y − a3)(y + a3) = x(x2 + b2x + 2b4)

y+y− = x w

with y± ≡ y ± a3, w ≡ x2 + b2x + 2b4

> Non-Cartier divisors {y± = x = 0} ↔ extra section, massless U(1).

> Sing at Cq=1 : {a3 = b4 = 0} on the base↔ charged states

Weak coupling limit: [Sen] CY3 : ξ2 = b2 , ∆D7 = (b4 − ξa3)(b4 + ξa3)

One U(1) brane and its orientifod image,
intersecting at {a3 = b4 = 0} (matter).
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Conifold - Matrix Factorization (MF)

Eq y+y− = s w admits a (pair of) MF, i.e. a pair of matrices (φ, ψ) s.t.

φ · ψ = ψ · φ = (y+y− − x w)12

Conifold MF:

φ =

(
y− x
w y+

)
ψ =

(
y+ −x
−w y−

)
From φ, ψ one can define (MCM) modules over R [Eisenbud], e.g.

M = coker(R⊕2 ψ−→ R⊕2) ≈ R⊕2/ Imψ

where R = C[y+, y−, x ,w ]/(y+y− − x w) is the coordinate ring.

I ‘Line bundle’ over conifold ( but ‘rank two’ on sing locus )

I defined on sing space
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Conifold - Small resolution

Conifold MF:

φ =

(
y− x
w y+

)
ψ =

(
y+ −x
−w y−

)
Small resolution:(

y− x
w y+

)(
`1

`2

)
= 0 ⊂ Amb4 × P1

[`1,`2]

I Exceptional locus: P1
[`1,`2].

I Introduced line bundle L = O(1), that is lift of M.

I Associated divisor c1(L) is locus where a generic section vanishes, i.e.

σ1`2 − σ2`1 = 0 ⇒ σ1y− + σ2x = 0 , σ1w + σ2y+ = 0

I c1(L) intersects P1
[`1,`2] at one point.
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Conifold - Divisor on singular space

For the conifold:

φ =

(
y− x
w y+

)
ψ =

(
y+ −x
−w y−

)
M = coker(R⊗2 ψ−→ R⊗2) ∼ rank-1 (line bundle over resolved conifold)

> c1(M) ∼ locus where a generic section vanishes.

> coker ψ ∼= Im φ → c1 :

(
y− x
w y+

)(
σ1

σ2

)
= 0,

i.e. σ1y− + σ2x = 0 , σ1w + σ2y+ = 0

> Family of non-Cartier divisors, among which extra-section of elliptic
fibration (σ1 = 0, σ2 = 1).
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Morrison-Park

U(1) restriction is subcase of class of ellitpic fibrations with one extra section.

Generic case is described by Morrison-Park (MP)

y2 = x3 + c2x2 +
(

2c1c3 − b2c0

)
x + c0c2

3 − b2c0c2 + b2c2
1

> A rational section ↪→ massless U(1);

> two curves of conifold-like sing ↪→ matter with charges q = 1, 2.
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Morrison-Park — weak coupling limit

y2 = x3 + c2x2 +
(

2c1c3 − b2c0

)
x + c0c2

3 − b2c0c2 + b2c2
1

Sen limit realized by rescaling c3 7→ εc3, b 7→ εb and taking ε→ 0.

◦ CY 3-fold: ξ2 = c2. Orientifold involution: ξ 7→ −ξ.
◦ D7-brane locus:

∆D7 =
(

c2
3 − c2b2

)(
c2

1 − c2c0

)
= (c3 − ξb) (c3 + ξb)

(
c2

1 − ξ2c0

)
Pair of brane-imagebrane and invariant brane: one massless U(1).

◦ Matter curves:

Cq=2 = { c3 = b = 0 } , Cq=1 = { c2
3 − c2b2 = c2

1 − c2c0 = 0 }
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Morrison-Park from Universal Flop of length 2

Is there a 2× 2 MF ?

The answer is NO ! But there is a 4× 4:

MP-threefold can be seen as a submanifold inside the universal flop of length
2 (that is a six-fold inside C7

[x,y,z,t,u,v,w ]): [Curto,Morrison; Aspinwall,Morrison]

y2 = u x2 + 2v x z + w z2 − (u w − v2)t2 .

MP given by:

u = c2 + x , t = b , w = c0 , v = c1 , z = c3

4× 4 MF of universal flop of length 2 is valid for MP as well.
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MP — Matrix Factorization

PMP ≡ −y2 + x3 + c2x2 +
(

2c1c3 − b2c0

)
x + c0c2

3 − b2c0c2 + b2c2
1

There exists a 4× 4 MF, i.e. (Ψ,Φ) such that

Ψ · Φ = Φ ·Ψ = PMP14

with

Ψ =


y + c1b x −c3 −b

2c1c3 + x(x + c2) y − c1b −b(x + c2) −c3

−c0c3 c0b y + c1b −x
c0b(x + c2) −c0c3 −2c1c3 − x(x + c2) y − c1b


and Φ = 2y14 −Ψ.

How can we extract massless U(1) and charged matter?
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U(1) divisor from MF

M = coker(R⊗4 Ψ−→ R⊗4) is now rank 2.

with Ψ =


y + c1b x −c3 −b

2c1c3 + x(x + c2) y − c1b −b(x + c2) −c3
−c0c3 c0b y + c1b −x

c0b(x + c2) −c0c3 −2c1c3 − x(x + c2) y − c1b


> Again c1(M) is U(1) div→ locus where two sections become parallel. c2

3 − b2(x + c2) c3x − b(y − c1b) −c3(y + c1b) − b x(x + c2)

c3x + b(y + c1b) x2 − c0b2 x(y + c1b) + c0c3b
c3(y − c1b) − b x(x + c2) −x(y − c1b) + c0c3b c0c3(y + c1b)

·

 σ1
σ2
σ3

 = 0

> In general, family of non-Cartier divisors. With specific choice of σi :

c2
3−b2(x +c2) = 0, c3x−b(y−c1b) = 0, c3(y +c1b)+b x(x +c2) = 0 ,

intersected with MP-equation.

> We recognize the extra (rational) section of elliptic fibration, i.e.

y = c1b − c2c3

b
+

c3
3

b3 , x = −c2 +
c2

3

b2
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Matter

y2 = x3 + c2x2 +
(

2c1c3 − b2c0

)
x + c0c2

3 − b2c0c2 + b2c2
1

Ψ =


y + c1b x −c3 −b

2c1c3 + x(x + c2) y − c1b −b(x + c2) −c3
−c0c3 c0b y + c1b −x

c0b(x + c2) −c0c3 −2c1c3 − x(x + c2) y − c1b



I Matter is at codimension-2 singular loci: {b(c2
1 − c2c0 − c0x) = 0, ...}

I MP is a determinantal variety; singular loci where matrix changes rank.

Matter where Ψ becomes rank lower than 2:

∗ charge two matter at rk= 0:

Cq=2 : {y = x = c3 = b = 0}

∗ charge one matter at rk= 1.

Cq=1 : {c2
3 − c2b2 − xb2 = c2

1 − c0c2 − c0x = c1x + c0c3 = y = ... = 0}
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Grassmann blowup

Resolved space: following eq in Amb4× Gr(2, 4) [Curto,Morrison]
y + c1b x −c3 −b

2c1c3 + x(x + c2) y − c1b −b(x + c2) −c3
−c0c3 c0b y + c1b −x

c0b(x + c2) −c0c3 −2c1c3 − x(x + c2) y − c1b




s1 `1
s2 `2
s3 `3
s4 `4

 = 0

with


s1 `1

s2 `2

s3 `3

s4 `4

 ∈ Gr(2, 4).

B Gr(2, 4) is a quadric in P5: X12X34 + X13X24 + X14X23.

B Exceptional fiber is given by 3 eqn’s in Gr(2, 4), linear in P5.

B Hence, exceptional fiber is a quadratic P1 in P2.
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Matter with charge 1
Take b 6= 0 (open patch away from charge two locus)→ one can bring MF to
the form

Ψ =


1 0
0 PMP

y − c1b − c3x
b x + c2 +

c2
3

b2

−c0b2 − x2 y + c1b +
c3x
b

 =

(
ψtriv

ψ

)
B 2× 2 MF ψ ←→ small resolution P1

s.r., s.t.
∫
P1

s.r.
c1(ψ) = 1.

B Grassmann blowup now reduces to(
ψtriv

ψ

) 
0 0
0 1
s3 0
s4 0

 = 0 → P1
Gr ∼ P1

s.r.

B Rank-two module splits: M = Mtriv ⊕Mψ; hence

c1(Ψ) = c1(ψtriv) + c1(ψ) = c1(ψ)

and then
q =

∫
P1

Gr

c1(Ψ) =

∫
P1

s.r.

c1(ψ) = 1.
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Matter with charge 2
Take c2

1 − c2c0 − c0x 6= 0 (open patch away from charge one locus)→ one
can bring MF to the form

Ψ =

(
χ

χ

)

B 2× 2 MF χ←→ small resolution P1
s.r., s.t.

∫
P1

s.r.
c1(χ) = 1.

B Grassmann blowup now reduces to(
χ

χ

) 
0 `1
0 `2
s3 0
s4 0

 = 0

Exceptional locus χ = 0 and `1s4 − `2s3, i.e. P1
Gr ⊂ P1,`

s.r. × P1,s
s.r.

B Rank-two module splits: M = Mχ ⊕Mχ; hence

c1(Ψ) = c1(χ) + c1(χ)

and then
q =

∫
P1

Gr

c1(Ψ) = 2
∫
P1

s.r.

c1(χ) = 2.
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Higher charge models
Extrapolate:

If variety comes from universal flop of length ` with MF that is 2`× 2`,

then it will have q = 1, 2, ..., ` states when rank goes from ` to `− 1, ..., 0.

Example ` = 3: ψtr

ψtr

ψ1

 ←→ charge 1 states

 ψtr

ψ2

ψ2

 ←→ charge 2 states

 ψ3

ψ3

ψ3

 ←→ charge 3 states

Since ` ≤ 6 [Katz,Morrison], we expect an upper bound on the charge q ≤ 6.

[Wati’s talk]
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Conclusions

I Matrix factorization for threefold with massless U(1).

I Naturally encode extra U(1) divisor (already in the singular limit): family
of representatives that includes extra section of elliptic fibration.

I Charge 1 and 2 matter on loci where rank goes from 2 to 1 and 0.
Charge given by intersection of exceptional P1 with extra divisor:
encoded into how matrix splits around sing. Bound q ≤ 6?

Open issues:

B More complicated geometries.

B Check that known q-charge models admit a 2q × 2q MF and descend
from flop of length q.

B Quiver of MP and NCCR.
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Thank you!
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